Bất phương trình 4 x 2 + x - m + 4 x 2 + 2 > 2 2 x 2 + x - m + 2 x nghiệm đúng với mọi số thực x khi và chỉ khi
A. m ∈ ( - ∞ ; - 1 2 )
B. m ∈ - ∞ ; - 1 4
C. m ∈ ( - ∞ ; - 1 4 ]
D. m ∈ - ∞ ; - 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
- Lập bảng xét dấu :
Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)
b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)
( Làm tương tự câu a )
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
\(f\left(x\right)=\left(3m-4\right)x^2-2\left(m-2\right)x+m-1< 0\)
\(TH1:3m-4=0\Leftrightarrow m=\dfrac{4}{3}\Rightarrow f\left(x\right)=\dfrac{4}{3}x+\dfrac{1}{3}< 0\Leftrightarrow x< -\dfrac{1}{4}\left(ktm\right)\)
\(TH2:3m-4>0\Leftrightarrow m>\dfrac{4}{3}\Rightarrow f\left(x\right)< 0\forall x>1\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x1\le1< x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m-1\right)\left(3m-4\right)>0\\\left(x1-1\right)\left(x2-1\right)\le0\Leftrightarrow x1.x2-\left(x1+x2\right)+1\le0\\\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-4}+1\le0\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\left(màm>\dfrac{4}{3}\right)\Rightarrow loại\)
\(TH3:3m-4< 0\Leftrightarrow m< \dfrac{4}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\Delta'=0\Leftrightarrow m=0\left(tm\right)\\x=\dfrac{2\left(m-2\right)}{3m-4}=\dfrac{1}{2}\notin\left(1;+\infty\right)\left(tm\right)\end{matrix}\right.\\\Delta'< 0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{2}\end{matrix}\right.\\x1< x2\le1\left(1\right)\\\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\Leftrightarrow0< m< \dfrac{3}{2}\\\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-2}+1\ge0\\\dfrac{2\left(m-2\right)}{3m-4}-2< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m\le\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}m\le0\\0< m\le\dfrac{1}{2}\end{matrix}\right.\)
thay \(\dfrac{1}{2}\) vào ra x<1/5 hoặc x>1 chứ có phải Vx>1 đâu ạ
chọn bừa ?
chọn bừa là coi như xong ak ?
k bt lm thì đừng cố tình khiến ngta lm sai
\(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\)
\(\Leftrightarrow-\left(-x^2+2x+8\right)+4\sqrt{-x^2+2x+8}\ge10-m\left(1\right)\)
Đặt \(t=\sqrt{-x^2+2x+8}\left(0\le t\le3\right)\)
\(\left(1\right)\Leftrightarrow10-m\le f\left(t\right)=-t^2+4t\)
Yêu cầu bài toán thỏa mãn khi
\(10-m\le minf\left(t\right)=min\left\{f\left(0\right);f\left(3\right);f\left(2\right)\right\}=f\left(0\right)=0\)
\(\Leftrightarrow m\ge10\)
Vậy \(m\ge10\)
Để \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow \,\,\Delta ' < 0\\ \Leftrightarrow \,\,{\left( { - m} \right)^2} - 4 < 0\\ \Leftrightarrow \,\,{m^2} - 4 < 0\end{array}\)
Ta có \(f\left( m \right) = {m^2} - 4\) có hai nghiệm phân biệt \({m_1} = - 2\) và \({m_2} = 2.\)
Mặt khác: \(a = 1 > 0\) nên ta có bảng xét dấu sau:
Vậy tập nghiệm của bất phương trình là: \(S = \left( { - 2;2} \right).\)
Chọn A.
Để bất phương trình nghiệm đúng với mọi x trước tiên bất phương trình phải xác định trên R.
Tức
Khi đó yêu cầu bài toán tương đương với:
Ta luôn có .
Xét Vậy khi m ≤ - 1 4 thì điều này không xảy ra, tức với mọi m ≤ - 1 4 thì Vậy các giá trị cần tìm là m ≤ - 1 4
Chọn đáp án C.