K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

- Lập bảng xét dấu :

Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)

b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)

( Làm tương tự câu a )

 

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0
NV
4 tháng 2 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

a ơi giúp e với 

https://hoc24.vn/cau-hoi/tim-gtnn-cua-t2m4-2m2-12m-18.333959553188

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

2 tháng 4 2020

1/ ycbt <=> ac < 0
<=> (m-2).(m+3) < 0 <=> m2 + m - 6 < 0
<=> -3 < x < 2
Vậy m ∈ (-3;2) thì pt có 2 nghiệm trái dấu

2 tháng 4 2020

2/ ycbt <=> \(\left\{{}\begin{matrix}\Delta'>0\\s>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-6>0\\2m>0\\m+3>0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m>6\\m>-2\\m>-3\end{matrix}\right.\)
<=> m > 6

11 tháng 4 2020

1. Ta có : 3x+12=0 <=> x= -4

bảng xét dấu:

x -∞ -4 + ∞
3x+12

- 0 +

f(x) >0 ∀ x ∈ (-4;+∞)

f(x) <0 ∀ x∈ (-∞;-4)

2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)

Bảng xét dấu:

x -∞ 9/5 +∞
-5x+9 + 0 -

f(x) >0 ∀ x ∈ (-∞; 9/5)

f(x) <0 ∀ x ∈(9/5; +∞)

3. Ta có : -3x-9=0 <=> x= -3

x -∞ -3 +∞
-3x-9 + 0 -

f(x) >0 ∀ x∈ (-∞; -3)

f(x) <0 ∀x∈ ( -3; +∞ )

4. Ta có : x (2x+4)=0

+, x=0

+, 2x+4=0 <=> x= -2

x -∞ -2 0 +∞
x - \(|\) - 0 +
2x+4 - 0 + \(|\) +
f (x) + 0 - 0 +

f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)

f(x) <0 ∀ x ∈ (-2;0)

5. Ta có: (x-2)(-x+4)=0

+, x-2=0 <=> x=2

+, -x+4=0 <=> x= 4

x -∞ 2 4 +∞
x-2 - 0 + \(|\) +
-x+4 + \(|\) + 0 -
f(x) - 0 + 0 -

f(x) >0 ∀ x ∈ (2;4)

f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)

6. Ta có : (-4x+3)(x-6)=0

+, -4x+3=0 <=>x= \(\frac{3}{4}\)

+, x-6 =0 <=> x=6

x -∞ 3/4 6 +∞
-4x+3 + 0 - \(|\) -
x-6 - \(|\) - 0 +
f(x) - 0 + 0 -

f(x) >0 ∀ x∈ (3/4;6)

f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)

2 tháng 4 2020

Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)

b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)

2 tháng 4 2020

Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)

1:

c: =>1/3x+2/3-x+1>x+3

=>-2/3x+5/3-x-3>0

=>-5/3x-4/3>0

=>-5x-4>0

=>x<-4/5

d: =>3/2x+5/2-1<=1/3x+2/3+x

=>3/2x+3/2<=4/3x+2/3

=>1/6x<=2/3-3/2=-5/6

=>x<=-5

2:

Mở ảnh

Mở ảnh

Mở ảnh

Mở ảnh