CMR:Nếu a2 =bc thì :
(a + b)/(a-b)=(c+a)/(c-a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a/b = 1 => a = b ( 1 )
=> b/c = 1 => b = c ( 2 )
=> a/c = 1 => a = c ( 3 )
Từ (1)(2)(3) => đpcm
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=1.b=b\)
\(b=1.c=c\)
\(\Rightarrow a=b=c\)( ĐPCM )
Ta có: \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)⋮2\)(tích 2 số nguyên liên tiếp)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)
Mà \(a^2+b^2=c^2+d^2\)
\(\Rightarrow2\left(a^2+b^2\right)-\left(a+b+c+d\right)⋮2\)
\(\Rightarrow a+b+c+d⋮2\)
Mà a, b, c, d nguyên dương => a+ b+ c+ d > 2
=> a+ b+ c+ d là hợp số
Bổ sung \(a;b;c;d\in Z^+\)
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Lạp luận tích 2 số nguyên liên tiếp chia hết cho 2
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\) \(\left(1\right)\)
Lại có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+a^2\right)\)
\(\Rightarrow a^2+b^2+c^2+d^2⋮2\) \(\left(2\right)\)
Từ (1) và (2) suy ra
\(a+b+c+d⋮2\)
Mà \(a+b+c+d>2\) \(Do\)\(a;b;c;d\in Z^+\)
\(\Rightarrow a+b+c+d\)là hợp số
1)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+C+a}=1\)
=> a=b ; b=c => a=b=c
=> đpcm
2)
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z}{3+10}=\frac{7+y}{13}\)
=> 13y = 6.(7+y)
=> 13y = 42+6y
=> 7y = 42
=> y=6
=> x/3 = z/10 = 1
=> x=3 ; y=10
Lời giải:
$a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$
Đặt $\frac{a}{c}=\frac{b}{a}=k\Rightarrow a=ck; b=ak$
Khi đó:
$\frac{a+b}{a-b}=\frac{a+ak}{a-ak}=\frac{a(1+k)}{a(1-k)}=\frac{1+k}{1-k}(1)$
$\frac{c+a}{c-a}=\frac{c+ck}{c-ck}=\frac{c(1+k)}{c(1-k)}=\frac{1+k}{1-k}(2)$
Từ $(1); (2)$ ta có đpcm.