K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ ∆ ′ = 2m + 5  ≤  0

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)

và (2; + ∞ ) khi m  ≤  −5/2.

31 tháng 3 2018

Chọn D

NV
8 tháng 7 2021

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

23 tháng 5 2017

8 tháng 4 2018

Chọn B.

Tập xác định 

Có 

Hàm số nghịch bến trên mỗi khoảng của tập xác định

24 tháng 10 2018

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ Δ′ = 2m + 5 ≤ 0

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)

và (2; + ∞ ) khi m ≤ −5/2.

NV
20 tháng 7 2021

\(y'=3x^2-6mx\)

Hàm nghịch biến trên \(\left(0;1\right)\) khi với mọi \(x\in\left(0;1\right)\) ta có:

\(3x^2-6mx\le0\)

\(\Leftrightarrow3x\left(x-2m\right)\le0\)

\(\Leftrightarrow x-2m\le0\)

\(\Leftrightarrow m\ge\max\limits_{\left(0;1\right)}\dfrac{x}{2}\Rightarrow m\ge\dfrac{1}{2}\)

6 tháng 12 2017

Đáp án C

D = ℝ \ 2

Ta có: y ' = 2 x + m + 1 2 − x + x 2 + m + 1 x − 1 2 − x 2

= − x 2 + 4 x + 2 m + 1 2 − x 2

Hàm số nghịch biến trên mỗi khoảng xác định khi

g x = − x 2 + 4 x + 2 m + 1 ≤ 0 ∀ x ∈ D ⇔ a = − 1 < 0 Δ g x ' = 4 + 2 m + 1 ≤ 0 ⇔ m ≤ − 5 2

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

NV
22 tháng 6 2021

\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?

\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi và chỉ khi:

\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)

\(\Leftrightarrow m\le-\dfrac{1}{2}\)