K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

\(y'=3x^2-6mx\)

Hàm nghịch biến trên \(\left(0;1\right)\) khi với mọi \(x\in\left(0;1\right)\) ta có:

\(3x^2-6mx\le0\)

\(\Leftrightarrow3x\left(x-2m\right)\le0\)

\(\Leftrightarrow x-2m\le0\)

\(\Leftrightarrow m\ge\max\limits_{\left(0;1\right)}\dfrac{x}{2}\Rightarrow m\ge\dfrac{1}{2}\)

20 tháng 12 2019

\(y'=3x^2-6mx-9m^2,y'=0\Leftrightarrow\left[{}\begin{matrix}x=-m\\x=3m\end{matrix}\right.\)

Với m=0 thỏa mãn

Dựa vào bảng biến thiên suy ra \(m\ge\frac{1}{3}\) hoặc \(m\le-1\)

Cách khác:

Bạn dùng tính chất sau:Cho hàm số \(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm \(x_1< x_2\) thì \(x_1\le\alpha< \beta\le x_2\Leftrightarrow\left\{{}\begin{matrix}af\left(\alpha\right)\le0\\af\left(\beta\right)\le0\end{matrix}\right.\)

Hàm số nghịch biến trên khoảng (0,1) tương đương với \(y'\le0\) với mọi x thuộc (0,1)

Với m=0 thỏa mãn, xét m khác 0

\(\Delta'_{y'}=36m^2>0\forall m\ne0\) nên y' luôn có hai nghiệm phân biệt \(x_1,x_2\)

\(y'\le0\forall x\in\left(0;1\right)\Leftrightarrow x_1\le0< 1\le x_2\\ \Leftrightarrow\left\{{}\begin{matrix}3y'\left(0\right)\le0\\3y'\left(1\right)\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\ge\frac{1}{3}\\m\le-1\end{matrix}\right.\)

16 tháng 8 2019

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ ∆ ′ = 2m + 5  ≤  0

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)

và (2; + ∞ ) khi m  ≤  −5/2.

31 tháng 3 2018

Chọn D

8 tháng 4 2018

Chọn B.

Tập xác định 

Có 

Hàm số nghịch bến trên mỗi khoảng của tập xác định

8 tháng 10 2017

Ta có y ' = - 3 x 2 + 6 x + 3 m . Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)

Cách 1: Dùng định lí dấu tam thức bậc hai.

Xét phương trình - 3 x 2 + 6 x + 3 m . Ta có Δ' = 9(1 + m)

TH1: Δ' ≤ 0 => m ≤ -1 khi đó, - 3 x 2 + 6 x + 3 m < 0 nên hàm số nghịch biến trên R .

TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±√(1+m) .

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên (0; +∞) <=> 1 + √(1+m) ≤ 0, vô lí.

Từ TH1 và TH2, ta có m ≤ -1

Cách 2: Dùng phương pháp biến thiên hàm số.

Ta có y '   =   - 3 x 2   +   6 x   +   3 m   ≤   0 , ∀x > 0 <=>   3 m   ≤   3 x 2   -   6 x , ∀x > 0

Từ đó suy ra 3 m   ≤   m i n ( 3 x 2   -   6 x ) với x > 0

Mà  3 x 2 - 6 x = 3 ( x 2 - 2 x + 1 ) - 3 = 3 ( x - 1 ) 2 - 3 ≥ - 3 ∀ x

Suy ra: m i n (   3 x 2   –   6 x )   =   -   3 khi x= 1

Do đó 3m ≤ -3 hay m ≤ -1.

Chọn đáp án C.

1 tháng 9 2021

\(f'\left(x\right)=-x^2+2x+m\)

Để hs y = f(x) nghịch biến trên khoảng (0; dương vc)

\(f'\left(x\right)\le0\forall x\in\left(0;+\infty\right)\)

\(-x^2+2x+m\le0\)

\(m\le x^2-2x\)

\(m\le-1\)

24 tháng 10 2018

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ Δ′ = 2m + 5 ≤ 0

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)

và (2; + ∞ ) khi m ≤ −5/2.

4 tháng 3 2019

Đáp án B

EUZkcctPWGE9.png

29 tháng 8 2021

\(TXĐ:D=R\)

\(y=x^{3}-3mx^{2}-9m^{2}x\)

\(y'=3x^{2}-6mx-9m^{2}=0\)

\(\Leftrightarrow\)\(y'=3(x+m)(x-3m)=0\)

\(\left[\begin{array}{} x=-m\\ x=3m \end{array} \right.\)

\(y'<0\) \(\forall\)\(x\) \(\in\)\((0,1)\).Ta xét các trường hợp

\(TH1:-m\)\(\le\)\(0\)\(<1\)\(\le\)\(3m\)

\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)

\(TH2:3m\)\(\le\)\(0\)<\(1\)\(\le\)\(-m\)

\(\Leftrightarrow\)\(m\)\(\le\)\(-1\)

Vậy \(m\)\(\ge\)\(\dfrac{1}{3}\) hoặc \(m\)\(\le\)\(-1\)

\(\Leftrightarrow\)\(m \)\(\ge\)\(\dfrac{1}{3}\)

29 tháng 8 2021

cái tương đương dưới cùng là sai nha.Nó bị nhảy