K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

 

26 tháng 11 2018

+ Kẻ SH ⊥ AC, H ∈  AC

Do (SAC) (ABCD) ⇒ SH (ABCD)

+ BD = 2a ⇒ AC = 2a

SA = A C 2 − S C 2 = 2 a 2 − a 3 2 = a ; SH =  S A . S C A C = a . a 3 2 a = a 3 2

Ta có: AH = S A 2 − S H 2 = a 2 − a 3 2 2 = a 2 ⇒ AC = 4AH

Lại có: HC ∩ (SAD) = A d C ; S A D d H ; S A D = A C A H =  4

⇒ d(C; (SAD)) = 4d(H; (SAD))

Do BC // (SAD) (BC//AD)  ⇒  d(B; (SAD)) = d(C; (SAD))

Do đó d(B; (SAD)) = 4d(H; (SAD))

+ Kẻ HK ⊥ AD tại K, kẻ HJ ⊥  SK tại J

Ta chứng minh được HJ ⊥  (SAD) d(H; (SAD)) = HJ

⇒  d(B; (SAD)) = 4HJ

+ Tính HJ

Tam giác AHK vuông tại K có H A K ^ = C A D ^ = 45 ° ⇒  HK = AH.sin 45 ° =  a 2 4

Mặt khác: 1 H J 2 = 1 H K 2 + 1 S H 2 ⇒ HJ =  a 21 14

Vậy d(B; (SAD)) = 4 . a 21 14 = 2 a 21 7 .

Đáp án C

8 tháng 4 2016

D A B C N M I G H

\(d\left(M,BN\right)=\frac{\left|13\left(-1\right)-10.2+13\right|}{\sqrt{13^2+10^2}}=\frac{20}{\sqrt{269}}\)

\(H\in\Delta\Leftrightarrow H\left(3a;2a\right)\)

Gọi I là tâm ABCD, G là giao điểm của AC và BN. Ta thấy G là trọng tâm của tam giác BCD

Suy ra \(CG=\frac{2}{3}.CI=\frac{1}{3}AC\) mà \(AM=\frac{1}{4}AC\Rightarrow MG=\frac{5}{12}AC\Rightarrow CG=\frac{4}{5}MG\)

\(\Rightarrow d\left(C,BN\right)=\frac{4}{5}d\left(M,BN\right)=\frac{16}{\sqrt{269}}\Rightarrow d\left(H,BN\right)=2d\left(C,BN\right)=\frac{32}{\sqrt{269}}\)

\(\Leftrightarrow\frac{\left|13.3a-10.2a+13\right|}{\sqrt{269}}=\frac{32}{\sqrt{269}}\Leftrightarrow a=1\) hoặc \(a=\frac{-45}{19}\)

Vì H và M nằm khác phía đối với đường thẳng BN nên \(H\left(3;2\right)\)

8 tháng 4 2016

Tiếp.........

Ta thấy \(CM=\frac{3AC}{4}=\frac{2AB}{4}=\frac{2CD}{4}=\frac{CD}{2}=CD=CH\Rightarrow\Delta MHN\) vuông tại M

HM có phương trình \(y-2=0\Rightarrow MN:x+1=0\Rightarrow N\left(-1;0\right)\Rightarrow C\left(1;1\right),D\left(-3;-1\right)\)

Do \(\overrightarrow{CM}=3\overrightarrow{MA}\Rightarrow A\left(\frac{-5}{3};\frac{7}{3}\right)\Rightarrow I\left(\frac{-1}{3};\frac{5}{3}\right)\Rightarrow B\left(\frac{7}{3};\frac{13}{3}\right)\)

Vậy \(A\left(\frac{-5}{3};\frac{7}{3}\right);B\left(\frac{7}{3};\frac{13}{3}\right);C\left(1;1\right);D\left(-3.-1\right)\)

14 tháng 8 2016

Gọi H, J lần lượt là trung điểm của BC, AC.  

Ta có : \(\begin{cases}SH\perp\left(ABC\right)\\HJ\perp AC\end{cases}\) \(\Rightarrow AC\perp SJ\)=> SJH = 60 độ

\(AB=\frac{BC}{\sqrt{2}}=a\sqrt{2};HJ=\frac{AB}{2}=\frac{\sqrt{2a}}{2};SH=HJ.\tan60^o=\frac{a\sqrt{6}}{2}\)

Ta có : \(V_{S.ABC}=\frac{1}{3}SH\frac{AB.AC}{2}=\frac{1}{6}.\frac{\sqrt{6}}{2}.\left(\sqrt{2}\right)^2.a^3=\frac{a^3\sqrt{6}}{6}\)

Gọi E là hình chiếu của H lên SJ, khi đó ta có \(\begin{cases}HE\perp SJ\\HE\perp AC\end{cases}\) \(\Rightarrow HE\perp\left(SAC\right)\)

Mặt khác, do IH SC IH SAC / / (SAC)  , suy ra 

\(d\left[I,\left(SAC\right)\right]=d\left[H,\left(SAC\right)\right]=HE=HJ.\sin60^o=\frac{\sqrt{6}}{4}a\)

14 tháng 8 2016

ok chờ tí

4 tháng 9 2017

Đáp án A

5 tháng 4 2017

Đáp án D

Phương pháp: Đưa khoảng cách từ M đến (SAC) về khoảng cách từ H đến (SAC).

Cách giải: Gọi H là trung điểm của AB ta có SH ⊥ (ABCD)

Ta có (SC;(ABCD)) = (SC;HC) = Góc SCH =  45 0

=>∆SHC vuông cân tại H => 

 

Trong (ABD) kẻ HIAC,trong (SHI) kẻ HKSI ta có:

Ta có ∆AHI: ∆A CB(g.g) => 

23 tháng 1 2018

 

10 tháng 7 2019

Chọn đáp án B

Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có

 

Ta có

Tương tự, ta cũng chứng minh được

Từ đó suy ra 

Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) (ABC) là góc SBH. Vậy SBH =  60 0

Trong tam giác vuông ABH, ta có

Trong tam giác vuông SHB, ta có

28 tháng 8 2019