Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
ai làm được mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3
=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 49.50.( 51 - 48 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50
=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 48.49.50 - 48.49.50 ) + 49.50.51
=> 3A = 49.50.51
=> A = ( 49.50.51 ) : 3
=> A = 41650
A = 1.2 + 2.3 + 3.4 + ..... + 49.50
3A=1.2.3+2.3.3+3.4.3+...+49.50.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+48.49.(50-47)+49.50.(51-48)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50
3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...(47.48.49-47.48.49)-(48.49.50-48.49.50)+49.50.51
3A=0+0+...+0+0+49.50.51
3A=49.50.51
A=\(\frac{49.50.51}{3}\)
A=41650
Đáp số: A=41650
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
A=1.2+2.3+3.4+…+99.100
3A = 1.2.3 + 2.3.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
=> A = \(\frac{99.100.101}{3}\)= 333 300
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
Ta có:
3S = 1.2.3 + 2.3.4 + 3.4.3 + ... + 99.100.3
3S = 1.2 ( 3 - 0 ) + 2.3. ( 4 - 1 ) + 3.4 . ( 5 - 2 )............... 99.100 . ( 101 - 98 )
3S = ( 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100 )
3S = 99.100.101 - 0.1.2
3S = 999900 - 0
3S = 999900
S = 999900 : 3
S = 333300
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
mo di em a.cach lam ma ngu thi tick bat cong thoi.ngo nhu bu
S=1.2 + 2.3 + ..... + n.(n+1)
3S = 1.2.3 + 2.3.3 + ..... + n.(n+1).3
3S = 1.2.3 + 2.3.(4-1) + ...... + n.(n + 1).[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + n.(n + 1).(n + 2) - (n - 1).n.(n + 1)
3S = (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) +...... + [(n-1)n(n + 1) - (n - 1).n.(n + 1)] + n.(n + 1)(n + 2)
VẬy 3S = n.(n + 1)(n + 2)
Vậy S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta có: A=1.2+2.3+...+198.199+199.200
=>3A=1.2.3+2.3.3+...+198.199.3
+199.200.3
=>3A=1.2.3+2.3(4-1)+...+
198.199(200-197)+199.200(201-198)
=>3A=1.2.3+2.3.4-1.2.3+...+198.199.200
-197.198.199+199.200.201-198.199.200
=>3A=199.200.201
=>A=199.200.67
A=39800.67
A=2666600
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
tick đã tui mới làm cho
3A=1.2.3+2.3.3+...+n(n+1).3
3A=1.2(3-0)+2.3(4-1)+...+n(n+1)[(n+2)-(n-1)]
3A=(1.2.3-0.1.2)+(2.3.4-1.2.3)+...+[n(n+1)(n+2)-(n-1)n(n+1)]
3A=n(n+1)(n+2)
A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)