Ba người đi xe đạp đều xuất phát từ A đi về B. Người thứ nhất đi với vận tốc v1 = 10km/h. Sau 30 phút thì người thứ hai xuất phát với vận tốc là v2 = 20km/h. Người thứ ba đi sau người thứ hai 10 phút. Sau khi gặp người thứ nhất, người thứ ba đi thêm 40 phút nữa thì cách đều người thứ nhất và người thứ hai.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1)
Người thứ nhất đi đc trong 30p
\(s_1=v_1t=10,0.5=5\left(km\right)\)
Ng thứ 2 đi đc trong 30p
\(s_2=v_2t=12.0,5=6km\)
Gọi v3 là vận tốc của ng thứ 3, t1 t2 là khoảng tgian khi ng thứ 3 xuất phát và gặp ng thứ nhất và ng thứ 2
Khi ng thứ 3 gặp ng thứ nhất
\(v_3t_1=5+10t_1\\ \Rightarrow t_1=\dfrac{5}{v_3-10}\left(1\right)\)
Khi gặp ng thứ 2
\(v_3t_2=6+12t_2\\ \Rightarrow t_2=\dfrac{6}{v_3-12}\left(2\right)\)
Theo đề bài + từ (1) và (2)
\(\Rightarrow v_3=15km/h\)
gọi thời gian đi tới khi gặp xe một của xe ba là t3
thời gian đi tới khi gặp xe hai của xe ba là t3'
30'=0,5h
ta có:
lúc xe ba gặp xe một thì:
\(S_1=S_3\)
\(\Leftrightarrow v_1t_1=v_3t_3\)
do xe ba đi sau xe một 30' nên:
\(v_1\left(t_3+0,5\right)=v_3t_3\)
\(\Leftrightarrow10\left(t_3+0,5\right)=v_3t_3\)
\(\Leftrightarrow10t_3+5=v_3t_3\)
\(\Leftrightarrow v_3t_3-10t_3=5\)
\(\Rightarrow t_3=\frac{5}{v_3-10}\left(1\right)\)
ta lại có:
lúc xe ba gặp xe hai thì:
\(S_3=S_2\)
\(\Leftrightarrow v_3t_3'=v_2t_2\)
do xe hai đi trước xe ba 30' nên:
\(v_3t_3'=v_2\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'=12\left(t_3'+0,5\right)\)
tương tự ta có:
\(t_3'=\frac{6}{v_3-12}\left(2\right)\)
do thời gian gặp cả hai lần cách nhau một giờ nên:
t3'-t3=1
\(\Leftrightarrow\frac{6}{v_3-12}-\frac{5}{v_3-10}=1\)
\(\Leftrightarrow\frac{6\left(v_3-10\right)-5\left(v_3-12\right)}{\left(v_3-12\right)\left(v_3-10\right)}=1\)
\(\Leftrightarrow6v_3-60-5v_3+60=\left(v_3-12\right)\left(v_3-10\right)\)
\(\Leftrightarrow v_3=v_3^2-10v_3-12v_3+120\)
\(\Leftrightarrow v_3^2-23v_3+120=0\)
giải phương trình bậc hai ở trên ta được:
v3=15km/h
v3=8km/h(loại)
bn xem lại chỗ: k/c giữa 2 lần gặp của ng3 voi 2 ng đi trc là 1h?
(k thể như z dc vì v1 khác v2 nên k thể găp 2 ng cùng lúc 1h)
Người 3 đuổi kịp lần lượt 2 người trước ở 2 điểm cách nhau 30km hay 30 phút vậy? Xem lại đầu bài nhé.
Khi người 3 xuất phát hai người đầu đi được là:
Xe 1: \(l_1=v_1.t_1=8.\dfrac{3}{4}=6\left(km\right)\)
Xe 2: \(l_2=v_2.t_2=12.0,5=6\left(km\right)\)
Gọi t1' là thời gian người 3 gặp người 1:
\(t_1'=\dfrac{l}{v_3-v_1}=\dfrac{6}{v_3-8}\)(1)
Gọi thời gian người 3 gặp người 1 rồi đi 30ph là t2' = t1'+0,5, có
Xe 1: \(s_1=l_1+v_1t_2'=6+8\left(t_1+0,5\right)\)
Xe 2: \(s_2=l_1+v_2t_2'=6+12\left(t_1+0,5\right)\)
Theo bài ra ta có: \(s_2-s_3=s_3-s_1\)
\(\Leftrightarrow s_1+s_2=2s_3\)
\(\Leftrightarrow6+8\left(t_1+0,5\right)+6+12\left(t_1+0,5\right)=2v_3\left(t_1+0,5\right)\)(2)
(1)(2) => v_3 = 4 lm/h (loại) v3 = 14 (km.h) (tm)
vậy ....................
Đề bảo tìm j v bn?
Khi người thứ ba gặp người thứ nhất:
\(x_1=x_3\)\(\Rightarrow10t=v_3\left(t_1-\dfrac{2}{3}\right)\)\(\Rightarrow t_1=\dfrac{\dfrac{2}{3}v_3}{v_3-10}\)
Khi người 3 cách đều người 1 và người 2:
\(x_3=\dfrac{x_1+x_2}{2}=\dfrac{10t_2+20t_2-10}{2}=15t_2-5\left(km\right)\)
\(\Rightarrow v_3\cdot\left(t_2-\dfrac{2}{3}\right)=15t_2-5\)
Ta có: \(t_2-t_1=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{\dfrac{2}{3}v_3-5}{v_3-15}-\dfrac{\dfrac{2}{3}v_3}{v_3-10}=\dfrac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}v_3=18,43\\v_3=4,07\end{matrix}\right.\)