Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x+2y+3z-5=0. Đường thẳng Δ vuông góc với (P) cắt d1 và d2 có phương trình là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Ta có: Hai vector chỉ phương của hai đường thẳng là cùng phương nên hai đường thẳng luôn đồng phẳng.
Vector chỉ phương của đường thẳng d là u → = ( 1 ; - 2 ; - 1 )
Vector pháp tuyến của mặt phẳng
Phương trình mặt phẳng
Đáp án D
Phương pháp:
Đường thẳng d: x - x 0 a = y - y 0 b = z - z 0 c có 1 VTCP là a → = a ; b ; c
Cách giải: Đường thẳng d có 1 VTCP là a → = 3 ; - 2 ; 1
Đáp án C.
Phương trình tham số của đường thẳng Δ 2 : x = − 4 + 3 t ' y = − 2 + 2 t ' z = 4 − t ' , t ' ∈ ℝ
Đường thẳng lần lượt có vecto chỉ phương (VTCP) là u 1 → = 2 ; − 1 ; 4 và u 2 → = 3 ; 2 ; − 1 . Suy ra u 1 → . u 2 → = 2.3 + − 1 .2 + 4. − 1 = 0 và Δ 1 ⊥ Δ 2 . Loại B, D.
Xét hệ phương trình
− 3 + 2 t = − 4 + 3 t ' 1 − t = − 2 + 2 t ' − 1 + 4 t = 4 − t ' ⇔ 2 t − 3 t ' = − 1 t + 2 t ' = 3 4 t + t ' = 5 ⇔ t = 1 t ' = 1 ⇒ Δ 1 , Δ 2
cắt nhau
Vậy Δ 1 cắt và vuông góc với Δ 2 .
Đáp án D
Phương pháp:
Đường thẳng
có 1 VTCP là u → = ( a ; b ; c )
Cách giải: Đường thẳng d có 1 VTCP là u → = ( 3 ; - 2 ; 1 )