K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Đáp án C

Phương pháp: Gọi là tâm hình vuông ⇒ I ∈ O O ' .

Sử dụng định lý Py-ta-go trong tam giác vuông để tính AB.

Cách giải:

Ta có:  I B = O I 2 + O B 2 = 9 a 2 4 + 9 a 2 = 3 a 5 2

⇒ A B = B I . 2 = 3 a 10 2

25 tháng 9 2019

14 tháng 10 2018

6 tháng 1 2018

Đáp án C

Giả sử dựng được hình vuông ABCD như hình vẽ.

24 tháng 2 2018

Gọi  C C 1 và  D D 1 là hai đường sinh của khối trụ

Khi đó  D 1 C 1 / / = D C (1)

Đông thời ABCD là hình vuông nên AB//=DC (2)

Từ (1) và (2) suy ra AB//= D 1 C 1

Vậy  A B C 1 D 1 nội tiếp đường tròn (O) nên  A B C 1 D 1 là hình chữ nhật. Suy ra  A C 1 là đường kính của (O)

Nghĩa là  A C 1 = 2 r

Tam giác  A B C 1 vuông ở B nên:

(3)

Tam giác  B C C 1 vuông ở  C 1 nên:

(4)

Từ (3) và (4) suy ra 

Vậy diện tích hình vuông ABCD là  S = A B 2 = 5 r 2 2

* Gọi  α là góc hợp bởi mp(ABCD) và mặt phẳng đáy của hình trụ, ta có:

Với 

Mà  A B C 1 D 1 là hình chiếu của ABCD trên mặt đáy hình trụ nên:

S ' = S . cos α

1 tháng 4 2017

Hạ đường sinh AA1 vuông góc với đáy chứa cạnh CD. Khi đó góc ADA1 là góc giữa hai mặt phẳng hình vuông và mặt đáy.

Vì góc A1DC = 1v nên A1C là đường kính.

Gọi cạnh hình vuông là a.

Ta có

a2 = AD2 = AA12 + A1D2

mà AA1 = h = r, nên ta có:

A1D2 + DC2 = A1C2;

a2 – r2 + a2 = 4r2;

⇒a2=52r2

Vậy diện tích hình vuông là: SABC=a2=52r2 Gọi δ = góc ADA1 là góc tạo bởi mặt phẳng hình vuông và đáy, ta có: sinδ = A1AAD=ra=√25
24 tháng 1 2018

Đáp án B

Giả sử hình vuông ABCD có độ dài cạnh a.

Kẻ các đường sinh AH,BK ta có

Theo pitago ta có


26 tháng 9 2019

7 tháng 12 2019

Đáp án D

24 tháng 6 2019