Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Gọi là tâm hình vuông ⇒ I ∈ O O ' .
Sử dụng định lý Py-ta-go trong tam giác vuông để tính AB.
Cách giải:
Ta có: I B = O I 2 + O B 2 = 9 a 2 4 + 9 a 2 = 3 a 5 2
⇒ A B = B I . 2 = 3 a 10 2
Chọn D.
Phương pháp:
Gọi M;N lần lượt là hình chiếu của A,B trên đáy còn lại không chứa A,B.
Từ đó ta sử dụng định lý Pytago để tìm cạnh của hình vuông
Sử dụng công thức: Diện tích hình vuông cạnh x bằng x2 .
Cách giải:
Xét hình trụ như trên. Gọi cạnh hình vuông ABCD là x ( x > 0)
Gọi M;N lần lượt là hình chiếu của A,B trên đáy còn lại không chứa A,B.
Vì AB / /DC; AB = DC => AB / /MN / /DC; AB = MN = DC hay MNDC là
hình bình hành tâm O’.
Lại có MD = NC = 2a nên MNDC là hình chữ nhật.
Suy ra
Hộp hình trụ có R = h = 10. Gọi a là độ dài cạnh hình vuông (tấm bìa) đã cho. Gọi AB, CD lần lượt là cạnh hình vuông trên mặt đáy; cạnh trên mặt phía trên của hộp. Gọi E, F lần lượt là hình chiếu vuông góc của C, D xuống mặt đáy. Ta có E F = C D = A B E F / / C D / / A B ⇒ A E F B là hình chữ nhật nội tiếp đường tròn có bán kính R = 10.
Do đó
Mặt khác theo pitago có B D 2 = B F 2 + F D 2 ⇔ a 2 = B F 2 + h 2 ( 2 )
Từ (1) và (2) có
Chọn đáp án B.
Đáp án A
Phương pháp: Độ dài đường sinh của hình nón , trong đó r; h lần lượt là bán kính đáy và chiều cao của hình nón.
Cách giải:
∆ A B C vuông cân tại A ⇒ A B = B C 2 = 1
V = πAB 2 . AA ' = π 1 . 2 = 2 π
Đáp án B
Đáp án C
Giả sử dựng được hình vuông ABCD như hình vẽ.