Cho tam giác ABC có AB = AC. D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE. a. Chứng minh EAB DAC . b. Gọi M là trung điểm của BC. Chứng minh AM là phân giác của DAE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
Tam giác ADE cân tại A (AD = AE)
mà DAE = 60
=> Tam giác ADE là tam giác đều
=> ADE = AED = 60\(^o\)
p/s : kham khảo
Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
Tam giác ADE cân tại A (AD = AE)
mà DAE = 60o
=> Tam giác ADE là tam giác đều
=> ADE = AED = 60o
Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
Tam giác ADE cân tại A (AD = AE)
mà DAE = 600
=> Tam giác ADE là tam giác đều
=> ADE = AED = 600
đây là cách làm của lớp 9 rồi,toán lớp 7 chưa học đường cao của tam giác
a: Xét ΔEAB và ΔDAC có
AE=AD
AB=AC
EB=DC
Do đó: ΔEAB=ΔDAC
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là đường phân giác
a. Xét tam giác EBA và tam giác DCA
AB=AC
AE=AD
BE=DC
=> tam giác EBA= tam giác DCA(ccc)
b. Theo câu a, tam giác EBA= tam giác DCA(ccc)=> AE=AD; AEB=ADC
Xét tam giác DAM và tam giác EAM có
AD=AE
ADM=AEM
DM=EM
=> tam giác DAM=tam giác EAM(cgc)
=> DAM=EAM => AM là phân giác DAE
c. Nếu DAE=60*
Xét tam giác DAE có AD=AE và DAE=60*=> tam giác DAE là tam giác đều
=> ADE=AED=DAE=60*
a) Tam giác ABC có AB = AC nên tam giác ABC cân tại A
\(\Delta ABE\)= \(\Delta ACD\) ( cgc ) ( AB = AC (gt) ; \(\widehat{B}\) =\(\widehat{C}\) ( tam giác ABC cân tại A) ; BE = CD = \(\frac{2}{3}\) BC )
Do đó \(\widehat{BAE}\) = \(\widehat{DAC}\) => tam giác DAE cân tại A
b) tam giác ABC cân tại A có AM là đường trung tuyến => AM là đường cao của tam giác ABC .
Tam giác DAE cân tại A có AM là đường cao ứng với cạnh DE => AM là đường phân giác của tam giác DAE => AM là tia phân giác của \(\widehat{DAE}\)
c) Tam giác DAE cân tại A có \(\widehat{DAE}\) = 600 => Tam giác DAE là tam giác đều => mỗi góc trong tam giác DAE đều là 600
a: Xét ΔAEB và ΔADC có
AE=AD
EB=DC
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)