Cho tam giác ABC vuông tại A. AB=c, AC=b. Quay tam giác ABC xung quanh đường thẳng chứa cạnh AB được một hình nón có thể tích bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
Phương pháp
Sử dụng công thức tính thể tích khối nón có bán kính đáy r và đương cao h là
Cách giải
Quay tam giác ABC quanh đường thẳng AB ta được khối nón có bán kính đáy r=AC=b và đường cao h=AB=c. Khi đó thể tích của khối nón bằng
a, S x q N 1 = πAC . BC = π . b . b 2 + c 2 = S 1
S x q N 2 = πA B . BC = π . c . b 2 + c 2 = S 2
=> S 1 ≠ S 2
b, V N 1 = 1 3 π . AC 2 . AB = 1 3 b 2 c
V N 2 = 1 3 π . A B 2 . A C = 1 3 c 2 b
=> V N 1 ≠ V N 2
Đáp án B
Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2
Đáp án A
Ta có chiều cao của khối nón bán kính hình tròn đáy lần lượt là
h = AB = a và r = AC =
Suy ra thể tích của khối nón là
Phân tích phương án nhiễu.
Phương án B: Sai do HS thiếu 1 3 trong công thức tính thể tích.
Phương án C: Sai do HS xác định h = a 3 và bán kính đáy r = a nên
Phương án D: Sai do HS nhớ sai công thức tính thể tích khối nón
Chọn D