K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Đáp án C

Phương pháp

+) Khi quay tam giác IOM quanh cạnh góc vuông OI ta được hình nón có đường cao IO và bán kính đáy IM.

+) Sử dụng công thức tính diện tích xung quanh của hình nón S x q = π r l  trong đó r, l lần lượt là bán kính đáy và độ dài đường sinh của hình nón.

Cách giải

Khi quay tam giác IOM quanh cạnh góc vuông OI ta được hình nón có đường cao IO và bán kính đáy IM. Tam giác OIM vuông cân tại I nên IM = IO = a

⇒ r = a ; h = a ⇒ l = r 2 + h 2 = a 2 ⇒ S x q = π r l = π a . a 2 = π a 2 2

27 tháng 12 2018

Chọn A.

Phương pháp

Công thức tính diện tích xung quanh hình nón có bán kính đáy , R chiều cao h và đường sinh l:  S x q = π R l .

Cách giải:

12 tháng 9 2017

Vì B A C ^ = 90 o  nên BC = 5. Khi đó

S 1 S 2 = π . 4 . 5 π . 3 . 5 = 4 3

Đáp án A

21 tháng 5 2018

Chọn đáp án D

Phương pháp

Sử dụng công thức tính thể tích khối nón có bán kính đáy r và đương cao h là

Cách giải

Quay tam giác ABC quanh đường thẳng AB ta được khối nón có bán kính đáy r=AC=b và đường cao h=AB=c. Khi đó thể tích của khối nón bằng

10 tháng 6 2019

Đáp án C.

6 tháng 12 2017

 

Chọn C.

Phương pháp:

Dựng hình, xác định các hình tròn xoay tạo thành khi quay và tính tỉ số thể tích.

Cách giải:

 

21 tháng 5 2017

Chọn C

1 tháng 10 2018

Đáp án B.

Khi quay tam giác ABC quanh cạnh AB, ta được khối nón có đỉnh A, đường sinh 

28 tháng 11 2019

Đáp án B.

Khi quay tam giác ABC quanh cạnh AB, ta được khối nón có đỉnh A, đường sinh