Tìm \(n\in Z\) sao cho \(n+2\vdots n-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3n+2\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(3n-3+5\right)⋮\left(n-1\right)\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
ban Nguyen Chau Tuan Kiet tra loi dung nhung ban quen y n thuoc N roi
\(n^2-7=n^2-9+2=\left(n-3\right)\left(n+3\right)+2\\ \left(n-3\right)\left(n+3\right)⋮\left(n+3\right)\\ \text{Để }\left(n^2-7\right)⋮\left(n+3\right)\Rightarrow2⋮\left(n+3\right)\Rightarrow\left(n+3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
$ n + 3 $ | $ n $ |
$ - 2 $ | $ - 5 $ |
$ - 1 $ | $ - 4 $ |
$ 1 $ | $ - 2 $ |
$ 2 $ | $ - 1 $ |
\(A=mn\left(m^2-n^2\right)\) (1)
\(A=mn\left(n-m\right)\left(n+m\right)\)(1)
1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}
2.-Với A dạng (2)
2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2
2.1- nếu n và m lẻ thì (n+m) chia hết cho 2
Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm
(n.n+6) chia hết cho(n+1)
n(n+1)+5 chia hết cho (n+1)
suy ra 5 chia hết cho ( n+1)
suy ra ( n+1) thuộc Ư(5)
.........rồi còn lại cứ thế tim ước của 5 rùi tính nha!!!
Ta có:\(n^2-3⋮n+3\)
\(\Leftrightarrow n^2+3n-3n-9+6⋮n+3\)
\(\Leftrightarrow\left(n^2+3n\right)-\left(3n+9\right)+6⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)-3\left(n+3\right)+6⋮n+3\)
\(\Leftrightarrow6⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(6\right)\)
Mà \(n\in N\)*\(\Rightarrow n+3\ge4\)
\(\Leftrightarrow n+3=6\)
\(\Leftrightarrow n=3\)
\(n^2-3⋮n+3\\ \Rightarrow\left(n-3\right)\left(n+3\right)+6⋮n+3\\ \Rightarrow6⋮n+3\Rightarrow n+3\in\text{Ư}\left(6\right)\)
Tới đây dễ rồi nha!
1) a3 + b3 + c3 – 3abc
Ta sẽ thêm và bớt 3a2b +3ab2 sau đó nhóm để phân tích tiếp
a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)
= (a + b)3 +c3 – 3ab(a + b + c)
= (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
= (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
2) x5 – 1
Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm:
x5 – 1 = x5 – x + x – 1
= (x5 – x) + (x – 1)
= x(x4 – 1) + ( x – 1)
= x(x2 – 1)(x2 + 1) + (x - 1)
= x(x +1)(x – 1)(x2 + 1) + ( x – 1)
= (x – 1)[x(x + 1)(x2 + 1) + 1].
3) 4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
n+2 chia hết n-3 \(\left(n\ne3;n\in Z\right)\)
Mà n-3 chia hết n-3
=> [(n+2)-(n-3)] chia hết n-3
<=> [n+2-n+3] chia hết n-3
=> 5 chia hết n-3
=> n-3 thuộc {-1 ; -5 ; 5; 1 }
Ta có bảng
Thử lại : đúng
Vậy \(n\in\left\{2;-2;4;8\right\}\)