K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019


18 tháng 1 2018

\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)

2 tháng 1 2019

16 tháng 12 2018

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)

=>B

2 tháng 8 2018

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

23 tháng 3 2019

Chọn đáp án D.

23 tháng 3 2019

Chọn A.

Dễ thấy un là cấp số nhân với q = 10

Ta có: u8 = 107u1; u10 = 109u1

Do đó PT 

Giải PT ta được logu1 = -17 u1 = 10-17 u2018 = 102017 u1 = 102000