K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

Chọn đáp án A

Từ  kẻ đường thẳng vuông góc với SC cắt SC tại K.

21 tháng 3 2019

29 tháng 5 2018

Chọn D.

Phương pháp:

- Gọi M là trung điểm của SD, nhận xét góc giữa SB và (SCD) cũng bằng góc giữa OM và (SCD).

- Xác định góc φ  và tính sin φ

Cách giải:

26 tháng 12 2019

Đáp án A

22 tháng 11 2018

Đáp án là C


22 tháng 3 2019

Đáp án B

Gọi H là trọng tâm Δ A B C

Dựng H K ⊥ A B , H E ⊥ C D , H F ⊥ S E

Ta có A B ⊥ S H K ⇒ S K H ⏜ = 60 °

Do đó S H = H K tan 60 °

Mặc khác H K = H B sin 60 °  ( Do  Δ A B C  là tam giác đều nên A B D ⏜ = 60 ° ) suy ra  H K = a 3 sin 60 ° = a 3 6 ⇒ S H = a 2

Lại có H E = H D tan 60 ° = a 3 3 ⇒ H F = a 7 = d H ; S C D

Do đó  B D H D = 3 2 ⇒ d B = 3 2 d H = 3 a 17 14

10 tháng 1 2019

11 tháng 3 2019

22 tháng 12 2017

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.