K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Vì x, y là các số nguyên tố nên x   ≥ 2 ;   y ≥ 2   ⇒ z ≥ 5   vậy z là số nguyên tố lẽ

x y   + 1   =   z ⇒   x y =   z - 1

Suy ra xy là số chẵn vậy x = 2 khi đó  z = 2y + 1

Nếu y lẽ thì 2 y ≡ 2  (mod 3)

2 y + 1   ⋮   3 ⇒ z ⋮ 3 (vụ lớ Vì z là nguyên tố )

Vậy y chẵn , suy ra y = z

z = 22 + 1 = 5

Vậy các số nguyên tố cần Tìm là x = y = z , z = 5

19 tháng 9 2023

\(x\) = 2; \(y\) = 2; \(z\) = 5.

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
NV
21 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)

Nhân vế với vế

\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:

\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)

\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)

21 tháng 8 2021

ai giúp mk với

19 tháng 3 2020

z đâu bn

19 tháng 3 2020

mình ghi thừa đó

5 tháng 7 2017

Chuyen sang ve trai cac hang tu chua x,y,z: 
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4 
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0 
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi: 
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0 
giai ra duoc x= 1; y=2; z=1 thoa man

19 tháng 3 2020

TA CÓ \(x^2-12y^2=1\)

\(\Leftrightarrow x^2=12y^2\)

\(\Leftrightarrow x=12y\)

\(\Leftrightarrow\frac{y}{1}=\frac{x}{12}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{y}{1}=\frac{x}{12}=\frac{y-x}{1-12}=\frac{1}{-11}=-\frac{1}{11}\)

tuwfddos tìm được x,y

       

         

           

19 tháng 3 2020

cảm ơn nhé