Tính giá trị của biểu thức:
a) M = 3 a 2 ( a 2 - 5 ) + a ( - 3 a 3 + 4 a ) + 6 a 2 tại a = -5;
b) N = x 5 – 15 x 4 + 16 x 3 - 29 x 2 + 13 x tại x = 14.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
\(A=\dfrac{7}{3}+\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+\dfrac{5}{2}=3+\dfrac{221}{84}=\dfrac{473}{84}\)
a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)
\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)
|x+3|=5
=>x=2(loại) hoặc x=-8(nhận)
Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)
b: A nguyên
=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}
=>x^2+x+2=2 hoặc x^2+x+2=4
=>x^2+x-2=0 hoặc x(x+1)=0
=>\(x\in\left\{1;0;-1\right\}\)
Thay a = 4, b = - 3 vào biểu thức A ta được:
A = 5ab - 3(a + b)
= 5.4. (-3) - 3. [4 + (-3)]
= 20. (-3) – 3. (4 – 3)
= - 60 – 3. 1
= - 60 – 3
= - (60 + 3)
= - 63.
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
`A = 2 + 2^2+ ... + 2^2017`
`=> 2A = 2^2 + 2^3 + ... + 2^2018`
`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`
`=> A = 2^2018 - 2`
`B = 1 + 3^2 + ... + 3^2018`
`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`
`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`
`=> 8B = 3^2020 - 1`
`=> B = (3^2020 - 1)/8`
`C = 5 + 5^2 - 5^3 + ... + 5^2018`
`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`
`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`
`=> 6C = 55 + 5^2019`
`=> C = (5^2019 + 55)/6`
a) Thay \(a = - 4,b = 18\)vào đa thức ta có:
\(A = - 5a - b - 20 = - 5. - 4 - 18 - 20 = - 18\).
b) Thay \(x = - 1,y = 3,z = - 2\)vào đa thức ta có:
\(B = - 8xyz + 2xy + 16y = - 8. - 1.3. - 2 + 2. - 1.3 + 16.3 = - 48 - 6 + 48 = - 6\).
c) Thay \(x = - 2,y = - 3\)vào đa thức ta có:
\(C = - {x^{2021}}{y^2} + 9{x^{2021}} = - {( - 1)^{2021}}.{( - 3)^2} + 9.{( - 1)^{2021}} = - ( - 1).9 + 9.( - 1) = 9 + ( - 9) = 0\).
a) Thu gọn M = - 5 a 2 từ đó tính được M = -125.
b) Gợi ý 15 = x + 1; 16 = x + 2; 29 = 2x + 1; 13 = x – 1.
Rút gọn N = -x, từ đó tính được N = -14.