K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

Chọn đáp án A

22 tháng 8 2019

Chọn đáp án A

 

Do đó, P có thể nhận các giá trị nguyên là 0; -1

 

 

 

STUDY TIP

Trong biểu thức P vai trò của z khác x, y do đó, ta tìm cách rút x, y theo z từ điều kiện ban đầu. Từ đó quy về phương trình ẩn z và tìm điều kiện để phương trình có nghiệm

 

Phương trình (2), (3) là các phương trình mặt phẳng

Hai mặt phẳng này cắt nhau theo giao tuyến d có vecto chỉ phương là 

Phương trình (4) là phương trình mặt cầu (S) có tâm O(0;0;0) bán kính  R = 5

 

X, y, z tồn tại khi và chỉ khi d cắt (S)

 

Do đó P có thể nhận các giá trị nguyên là 0; -1

 

STUDY TIP

Các biểu thức liên hệ giữa x, y, z có dạng phương trình mặt phẳng, mặt cầu. Từ đó giúp ta nghĩ đến việc xét vị trí tương dối giữa mặt cầu, với đường thẳng và mặt phẳng

 

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

mà 2x+y-z=0

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)

Do đó: x=3; y=2; z=8

17 tháng 4 2021

M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)

=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16

Min M= 16 khi  z=1/2 và  x=y =1/4

ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)

Ta có:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)

\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)

\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)

   \(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)

\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)

\(\Rightarrow A=x^2+y^2+z^2=3030\)

Vậy \(A=3030\)

 

 

30 tháng 10 2021

hay wa 😍

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
Áp dụng BĐT AM-GM:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:

\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)

Khi đó:

$A=3(\sqrt{1010})^2=3030$