K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

21 tháng 9 2016

x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

2 cái bằng nhau

21 tháng 9 2016

Chứng minh hộ tui phát

\(\text{Cho:}x^2+y^2+z^2=1\text{.Chứng minh rằng:}\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{z+2y}\ge\frac{1}{3}\)

\(\text{Áp dụng BĐT Cosi cho 2 số dương, ta có:}\)

\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)

\(\text{Lại có:}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\text{Do đó:}\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+x^2\right)\)

\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

\(\text{Dấu "=" xảy ra }\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

31 tháng 1 2022

cho minh hoi phan bat dang thuc cosi la ban dung cong thuc the nao ak

11 tháng 10 2021

ai lm dc bài này ko ạ. mik đang cần lắmkhocroi

NV
21 tháng 1 2021

\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)

BĐT cần chứng minh trở thành:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Thật vậy, ta có:

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng AM-GM:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)

Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm

`@` `\text {Ans}`

`\downarrow`

`1,`

\((y-5)(y+8)-(y+4)(y-1)\)

`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`

`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`

`= y^2+8y-5y-40 - y^2+y-4y+4`

`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`

`= -36`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`2,`

\(y^4-(y^2+1)(y^2-1)\)

`= y^4 - [y^2(y^2-1)+y^2-1]`

`= y^4- (y^4-y^2 + y^2-1)`

`= y^4-(y^4-1)`

`= y^4-y^4+1`

`= 1`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`3,`

\(x(y-z) + y(z-x) +z(x-y)\)

`= xy-xz + yz - yx + zx-zy`

`= (xy-yx) + (-xz+zx) + (yz-zy)`

`= 0`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`4,`

\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)

`= xy+xz-xyz - yz - yx + yxz + zy - zx`

`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`

`= 0`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`5,`

\(x(2x+1)-x^2(x+2)+x^3-x+3\)

`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`

`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`

`= 3`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`6,`

\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)

`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`

`= -3x^3 + 3x^2 + 16`

Bạn xem lại đề bài.

`\text {#KaizuulvG}`

NV
31 tháng 12 2021

\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)