K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

b: Xét tứ giác ADBE có

I là trung điểm của AB

I là trung điểm của DE

Do đó: ADBE là hình bình hành

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

15 tháng 12 2022

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Vì DEBFlà hình bình hành

nên DB cắt EF tại trung điểm của mỗi đường(1)

Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra E,O,F thẳng hàng

c: Để DEBF là hình thoi thì DE=BE=AB/2

Xét ΔDAB có

DE là trung tuyến

DE=AB/2

Do đo:ΔDAB vuông tại D

=>DA vuông góc với DB

24 tháng 10 2021

a: Xét tứ giác AECK có 

AK//CE

AK=CE

Do đó: AECK là hình bình hành

23 tháng 11 2021

a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)

Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)

\(\Rightarrow AK=CE\) và \(AK//CE\)

=> AECK là hình bình hành

b) Ta có: O là giao điểm 2 đường chéo AC và BD

=> O là trung điểm AC

=> O là trung điểm KE(AECK là hình bình hành)

=> E,O,K thẳng hàng

 

 

a: Xét tứ giác AECK có

AK//EC

AK=EC

Do đó: AECK là hình bình hành

a) Xét hình thang ABCD(AB//CD) có 

M là trung điểm của AD(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)

Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)

hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)

b) Ta có: AD//BE(gt)

AD\(\perp\)DC(gt)

Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)

Xét tứ giác ABED có 

\(\widehat{BAD}=90^0\)(gt)

\(\widehat{ADE}=90^0\)(gt)

\(\widehat{BED}=90^0\)(cmt)

Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

16 tháng 12 2020

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)

mà AB=CD(Hai cạnh đối của hình bình hành ABCD)

nên AE=CF=FD=EB

Xét tứ giác AECF có 

AE//CF(AB//CD, E∈AB, F∈CD)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AEFD có 

AE//FD(AB//CD, E∈AB, F∈CD)

AE=FD(cmt)

Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)

mà H∈AF(gt)

và K∈CE(gt)

nên HF//KC và EK//AH

Xét ΔDKC có 

F là trung điểm của CD(gt)

FH//DK(cmt)

Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)

⇒DH=KH(1)

Xét ΔABH có 

E là trung điểm của AB(gt)

EK//BH(cmt)

Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)

⇒BK=KH(2)

Từ (1) và (2) suy ra DH=HK=KB(đpcm)