K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Đáp án B

3 tháng 12 2019

Đặt hình lập phương vào hệ trục tọa độ Oxyz sao cho O = A; Ox; Oy; Oz hướng theo A B → , A D → , A E → . Gọi a > 0 là cạnh hình lập phương. Khi đó

M a ; 0 ; a 2 , N a 2 ; 0 ; a P 0 ; a ; a 2 , M a 2 ; a ; 0

Ta có 

M N → = - a 2 ; 0 ; a 2 , Q P → = - a 2 ; 0 ; a 2 , M Q → = - a 2 ; a ; a 2

Suy ra

  M N → = Q P → . M N → . M Q → = 0 M N = a 2 2 , M Q = a 6 2

Vậy MNPQ là hình chữ nhật

Đáp án B

28 tháng 3 2023

em khong biet

29 tháng 3 2023

loading...

11 tháng 12 2018

Mọi người giúp mình đi mà , mình đang cần rất gấp .

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE
Do đó; AEDF là hìnhvuông

b: Xét ΔAQD có

AB vừalà đường cao, vừalà trung tuyến

nên ΔADQ cân tại A

=>AB là phân giác của góc DAQ(1)

XétΔAQP có

AC vừa là đường cao, vừa la trung tuyến

nên ΔAQP cân tại A

=>AC là phân giáccủa góc DAP(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

c:góc MEF=góc MED+góc FED

=góc MDE+góc FAD

=góc DCA+góc DAC=90 độ

=>ME vuông góc với EF(3)

góc NFE

=góc NFD+góc EFD

=góc NDF+góc EAD
=90 độ

=>NF vuông góc vơi FE(4)

Từ (3), (4) suy ra MEFN là hình thang vuông

16 tháng 9 2019

giúp em zới ạ

❤❤❤

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

21 tháng 11 2022

a: Xét ΔMNQ có MA/MN=MB/MQ

nên AB//NQ và AB=NQ/2

Xét ΔPNQ có PD/PN=PC/PQ

nên DC//NQ và DC=NQ/2

=>AB//DC và AB=DC

Xét ΔNMP có NA/NM=ND/NP

nên AD//MP

=>AD vuông góc với NQ

=>AD vuông góc với AB

Xét tứ giác ABCD có

AB//CD

AB=CD

góc BAD=90 độ

DO đó: ABCD là hình chữ nhật

b: Xét ΔQBN và ΔQIM có

QB=QM

góc Q chung

QB=QI

Do đó: ΔQBN=ΔQIM

=>BN=IM

=>BN=MP/2=BC

Xét ΔNBQ và ΔNCQ có

BQ=CQ

gó BQN=góc CQN 

QN chung

Do đó: ΔNBQ=ΔNCQ

=>NB=NC=BC

=>ΔNBC đều