Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành
A F E D B C M
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
=>AM=MN(1)
Xét ΔMCD có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NC=NM(2)
Từ (1) và (2) suy ra AM=MN=NC
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
a) Ta có: \(AF=\dfrac{AD}{2}\)(F là trung điểm của AD)
\(BE=\dfrac{BC}{2}\)(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: \(AD=2\cdot AB\)(gt)
mà \(AD=2\cdot AF\)(F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và \(\widehat{A}=\widehat{FEB}\)(Số đo của các cạnh và các góc trong hình thoi AFEB)
hay \(\widehat{FEB}=60^0\)
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có \(\widehat{FEB}=60^0\)(cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒\(\widehat{BFE}=60^0\)(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên \(\widehat{A}=\widehat{DFE}\)(hai góc đồng vị)
hay \(\widehat{DFE}=60^0\)
Ta có: tia FE nằm giữa hai tia FB,FD
nên \(\widehat{DFB}=\widehat{DFE}+\widehat{BFE}\)
\(\Leftrightarrow\widehat{DFB}=60^0+60^0=120^0\)(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía bù nhau)
hay \(\widehat{D}=180^0-60^0=120^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DFB}=\widehat{D}\)
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có \(\widehat{DFB}=\widehat{D}\)(cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
giúp em zới ạ
❤❤❤