Trong không gian cho hình trụ có bán kính đáy R = 3, chiều cao h = 5. Tính diện tích toàn phần S t p của hình trụ đó.
A. S t p = 48 π
B. S t p = 30 π
C. S t p = 18 π
D. S t p = 39 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
V=pi*r^2*h
=>r^2*15*pi=375pi
=>r^2=25
=>r=5
Sxq=2*pi*r*h=2*5*15*pi=150pi
Đáp án A
Vì hình trụ nội tiếp hình cầu S ⇒ R 2 = r 2 + h 2 2 ⇔ 4 r 2 + h 2 = 4 R 2
Diện tích xung quanh của hình trụ là S x q = 2 π r h = π .2 r . h ≤ π 2 r 2 + h 2 2 = π 4 r 2 + h 2 2 = 2 π R 2
Dấu “=” xảy ra khi và chỉ khi 2 r = h ⇒ 2 h 2 = 4 R 2 ⇔ h 2 = 2 R 2 ⇔ h = R 2
Đáp án A
Gọi bán kính đáy và chiều cao của hình trụ lần lượt là r và h. Khi đó thiết diện qua trục của hình trụ là một hình chữ nhật có kích thước hai cạnh là 2r và h. Diện tích hình chữ nhật đó là S = 2 r h .
Quan sát hình vẽ, ta thấy R 2 = h 2 2 + r 2 ⇔ h = 2 R 2 − r 2 = 2 3 a 2 − r 2 .
Khi đó S = 2 r h = 4 r 3 a 2 − r 2 ≤ 4. r 2 + 3 a 2 − r 2 2 2 = 6 a 2 . Dấu “=” xảy ra khi và chỉ khi
r = 3 a 2 − r 2 ⇔ 2 r 2 = 3 a 2 ⇔ r = a 6 2 ⇒ h = 2 3 a 2 − 3 a 2 2 = a 6
Vậy diện tích toàn phần của hình trụ (T) là
S t p = 2 π r h + 2 π r 2 = 2 π a 6 . a 6 2 + 2 π a 6 2 2 = 9 π a 2 (đvdt).