Trong mặt phẳng với hệ toạ độ Oxy cho elíp E : x 2 9 + y 2 4 = 1 và hai điểm A( 3; -2); B( -3;-2) Tìm trên (E) điểm C sao cho tam giác BAC có diện tích lớn nhất.
A. C( 0; 3)
B.C( 0;2)
C. C(3;0)
D. C( 1;0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))
Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)
Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)
\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)
Bài 2:
Bạn tham khảo ở đây:
Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến
a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:
\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}} = 5\)
b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)
Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)
\(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)
Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)
13.
\(\overrightarrow{AB}=\left(-4;5\right)\) nên đường thẳng AB nhận \(\left(-4;5\right)\) hoặc \(\left(4;-5\right)\) là 1 vtcp
9.
d có 1 vtcp là \(\left(1;-2\right)\) nên d nhận \(\left(2;1\right)\) là 1 vtpt
Thay \(t=0\Rightarrow\) d đi qua điểm \(A\left(5;-9\right)\)
Phương trình d:
\(2\left(x-5\right)+1\left(y+9\right)=0\Leftrightarrow2x+y-1=0\)
Đáp án A
- A: B có hoành độ là hoành độ của 2 đỉnh của 2 bán trục lớn của (E) , chúng nằm trên đường thẳng y+ 2= 0. Điểm C có hoành độ và tung độ dương thì C nằm trên cung phần tư thứ nhất
- Tam giác ABC có AB= 6 cố định. Vì thế tam giác có diện tích lớn nhất khi khoảng cách từ C đến AB lớn nhất.
- Dễ nhận thấy C trùng với đỉnh của bán trục lớn (0; 3).