Với giá trị nào của m thì hệ phương trình m x + y = 2 m x + m y = m + 1 có vô số nghiệm
A. m = 1
B. m = −1
C. m = ± 1
D. m ≠ ± 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hệ có duy nhất 1 nghiệm thì \(\dfrac{m}{4}< >\dfrac{-1}{-m}=\dfrac{1}{m}\)
=>m^2<>4
=>m<>2 và m<>-2
b: Để hệ có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}=\dfrac{1}{m}\)
=>m^2=4 và 2m^2=m+6
=>m=2
c: Để hệ vô nghiệm thì m/4=1/m<>2m/m+6
=>m=-2
a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)
Khi m=3 thì hệ sẽ là:
3x+2y=5 và 5x+4y=8
=>x=2 và y=-1/2
b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)
=>m^2+m<>4m-2
=>m^2-3m+2<>0
=>m<>1 và m<>2
hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)
=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)
=>Ko có m thỏa mãn
Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1
=>m=2 hoặc m=1
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
m x + y = 2 m x + m y = m + 1 ⇔ y = 2 m − m x x + m 2 m − m x = m + 1 ⇔ y = 2 m − m x x + 2 m 2 − m 2 x = m + 1 ⇔ y = 2 m − m x x m 2 − 1 = 2 m 2 − m − 1
Với m 2 – 1 = 0 ⇔ m 2 = 1 ⇔ m = ± 1
Nếu m = 1 ta được 0x = 0 (đúng với ∀ x ) ⇒ Hệ phương trình có vô số nghiệm
Nếu m = −1 ta được 0x = 2 (vô lí) ⇒ hệ phương trình vô nghiệm
Vậy m = 1 thì hệ đã cho vô số nghiệm.
Đáp án: B
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
m x + y = 2 m x + m y = m + 1 ⇔ y = 2 m − m x x + m 2 m − m x = m + 1 ⇔ y = 2 m − m x x + 2 m 2 − m 2 x = m + 1 ⇔ y = 2 m − m x x m 2 − 1 = 2 m 2 − m − 1
Xét m 2 = 1 ⇔ m = 1
Nếu m = 1 ta được 0x = 0 (đúng với ∀ x) ⇒ Hệ phương trình có vô số nghiệm
Nếu m = −1 ta được 0x = 2 (vô lý) ⇒ hệ phương trình vô nghiệm
Đáp án:A