K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

NV
5 tháng 2 2021

\(\left\{{}\begin{matrix}m^2x+my=m\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=-1\\x+my=m+1\end{matrix}\right.\)

- Với \(m=\pm1\Rightarrow0.x=-1\) hệ vô nghiệm

- Không tồn tại m để hệ có vô số nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất

16 tháng 3 2020

1:
a)\(\hept{\begin{cases}nx+x=5 \\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
 

a: Để hệ có duy nhất 1 nghiệm thì \(\dfrac{m}{4}< >\dfrac{-1}{-m}=\dfrac{1}{m}\)

=>m^2<>4

=>m<>2 và m<>-2

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}=\dfrac{1}{m}\)

=>m^2=4 và 2m^2=m+6

=>m=2

c: Để hệ vô nghiệm thì m/4=1/m<>2m/m+6

=>m=-2

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên

29 tháng 12 2022

Bài 1:

- Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.

- Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)

- Với \(m=1\). Thế vào (1) ta được:

\(0x=0\) (phương trình vô số nghiệm).

\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)

- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)

Với \(m=-1\). Thế vào (1) ta được:

\(0x=-4\) (phương trình vô nghiệm)

Vậy với \(m=-1\) thì hệ đã cho vô nghiệm

Với \(m\ne\pm1,0\).

\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)

Thay vào (2) ta được:

\(\dfrac{3m+1}{m+1}+my=m+1\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)

\(\Leftrightarrow my\left(m+1\right)=m^2-m\)

\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)

\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)

Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).

 

29 tháng 12 2022

Bài 2:

\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)

\(\Rightarrow4\left(m+1\right)y-y=-6\)

\(\Leftrightarrow\left(4m+3\right)y=-6\)

\(\Rightarrow y=-\dfrac{6}{4m+3}\)

Để y nguyên thì:

\(6⋮\left(4m+3\right)\)

\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)

\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

4m+31236-1-2-3-6
m-1/2 (loại)

-1/4 (loại)

0 (nhận)3/4 (loại)-1 (nhận)-5/4 (loại)-3/2 (loại)-9/4 (loại)

\(\Rightarrow m\in\left\{0;-1\right\}\)

Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)

Thay vào (1) ta được:

\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)

Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.

Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.

Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)

Thay \(y=6\) vào (2) ta được:

\(4x-6=-2\)

\(\Leftrightarrow x=1\)

Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.

Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.