K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2014

   S=2+22+23+....+2100

  2.S=2+(22+23+...+299+2100)

      2.S=22+23+24+...+2100+2101

    -S=2+22+23+24+...+2100


2.S-S=2101-2

S=2100

Lưu Ý:Những chữ số mình viết thẳng hàng hay như thế nào thì bạn trình bày y như thế mới đúng ,kể cả gạch dài nha!

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7

     

 

13 tháng 7 2015

A) D

B)S

C)D

D)S

29 tháng 8 2018

Dễ thấy S có 100 số hạng nên ta có:

a,S=(2^1+2^2)+(2^3+2^4)+...+(2^99+2^100)

     =2(1+2)+2^3(1+2)+...+2^99(1+2)

     =3(2+2^3+...+2^99) chia hết cho 3

b,S=(2^1+2^2+2^3+2^4)+...+(2^97+2^98+2^99+2^100)

     =2(1+2+4+8)+...+2^97(1+2+4+8)

     =15(2+2^5+...+2^97) chia hết cho 15

29 tháng 8 2018

c, Ta có: 2S=2^2+2^3+...2^201

2S-S=2^201-2

Do 2^201=4^100 có chữ số tận cùng là 6

Nên 2^201-2 có chữ số tận cùng là 4

Hay S có chữ số tận cùng là 4

14 tháng 10 2023

S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + 2⁵⁶.30

= 30.(1 + 2⁴ + ... + 2⁵⁶)

= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10

Vậy chữ số tận cùng của S là 0

*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)

= 14 + 2³.14 + ... + 2⁵⁷.14

= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14

Vậy S ⋮ 14

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)