Rút gọn biểu thức A = x y 2 y x 3 5 3
A. x 2 y 7 1 3
B. y 7 x 2 15
C. x 2 y 7 15
D. x 7 y 2 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
a) \(=\left(a^3.a^5\right).\left(b^2.b\right)=a^8.b^3\)
b) Tương tự
c)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
a) \(=5x^2+40x+80+4\left(x^2-10x+25\right)-9\left(x+4\right)\left(x-4\right)\)
\(=5x^2+40x+80+4x^2-40x+100-9x^2+144\)
\(=9x^2-9x^2+40x-40x+324\)
\(=324\)
b) \(=x^2+4xy+4y^2+4x^2-4xy+y^2-5x^2+5y^2-10y^2+90\)
\(=5x^2-5x^2+10y^2-10y^2+\left(4xy-4xy\right)+90\)
\(=90\)
c)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)
\(=\left(2a^2-2a^2\right)+\left(2b^2-2b^2\right)+2c^2+4ab-4ab+2\left(ac+bc-ac-bc\right)\)
\(=2c^2\)
a) 5( x + 4 )2 + 4( x - 5 )2 - 9( 4 + x )( x - 4 )
= 5( x2 + 8x + 16 ) + 4( x2 - 10x + 25 ) - 9( x2 - 16 )
= 5x2 + 40x + 80 + 4x2 - 40x + 100 - 9x2 + 144
= ( 5x2 + 4x2 - 9x2 ) + ( 40x - 40x ) + ( 80 + 100 + 144 )
= 324
b) ( x + 2y )2 + ( 2x - y )2 - 5( x + y )( x - y ) - 10( y + 3 )( y - 3 )
= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5( x2 - y2 ) - 10( y2 - 9 )
= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5x2 + 5y2 - 10y2 + 90
= ( x2 + 4x2 - 5x2 ) + ( 4xy - 4xy ) + ( 4x2 + y2 + 5y2 - 10y2 ) + 90
= 90
c) ( a + b + c )2 + ( a + b - c )2 - 2( a + b )2
= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 - 2( a + b )2
= ( a + b )2 + 2( a + b )c + c2 + ( a + b )2 - 2( a + b )c + c2 - 2( a + b )2
= [ ( a + b )2 + ( a + b )2 - 2( a + b )2 ] + [ 2( a + b )c - 2( a + b )c ] + ( c2 + c2 )
= 2c2
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Đáp án C