K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

Chọn D

Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó

bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu

tiên chọn 2 vị trị trí xếp vách ngăn là  C 14 2 , 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là  C 14 2 .12!.

Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A

Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng

như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là  C 11 2 sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là  C 11 2 .9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A 12 3 .

Vậy số cách thỏa mãn biến cố A là . C 11 2 .9!. A 12 3

Vậy .

11 tháng 11 2017

Chọn D

Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu 

Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.

+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có  11 ! 2 ! cách

+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3  cách.

Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra  

Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:

11 tháng 3 2018

Chọn B

Không gian mẫu là tập hợp tất cả các cách xếp 4 quyển Toán khác nhau và 4 quyển Hóa giống nhau vào 8 trong 10 ô trống.

Khi đó, 

Gọi A là biến cố: “ Bốn quyển sách Toán xếp cạnh nhau và 4 quyển sách Hóa xếp cạnh nhau ”.

Để xếp 4 quyển sách Toán cạnh nhau và 4 quyển sách Hóa gần nhau trên giá sách 10 ô trống ta xem như có 4 vị trí để xếp

Xếp 4 quyển toán cạnh nhau có 4! cách, xếp 4 quyển Hóa có 1 cách, sau đó xếp 2 bộ đó vào 2 trong 4 vị trí.

Do đó: 

Xác suất để 4 quyển sách Toán cạnh nhau và 4 quyển Hóa cạnh nhau là:

25 tháng 9 2017

Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.

Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.

Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:

+ 1 “buộc” Toán.

+ 1 “buộc” Lý.

+ 5 quyển Hóa.

Thì sẽ có 7! cách xếp.

Vậy theo quy tắc nhân ta có 7!4!3!=725760  cách xếp.

Chọn C.

NV
20 tháng 4 2023

Xếp 5 quyển Toán cạnh nhau: \(5!\) cách

Xếp 5 quyển Lý cạnh nhau: \(4!\) cách 

Xếp 3 quyển Văn cạnh nhau: \(3!\) cách

Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách

Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn

Số quyển sách hai ngăn còn lại là :

370 - ( 30 + 10 ) = 330 ( quyển )

Số quyển sách chứa hai ngăn sau khi thay đổi là :

330 : 2 = 165 ( quyển)

Vậy số quyển sách lúc đầu chứa ở  ngăn trên là :

165 + 30 = 195 ( quyển )

Và số quyển sách lúc đầu ở ngăn dưới là:

165 + 10 = 175 ( quyển )

13 tháng 2 2019

Đáp án A

Số phần tử của không gian mẫu  n Ω = C 9 3 = 84

Gọi A là biến cố sao cho ba quyển lấy ra có

ít nhất một quyển sách Toán.  ⇒ n A ¯ = C 5 3 = 10

⇒ A ¯ là biến cố sao cho ba quyển lấy ra không

 có sách Toán ⇒ n A ¯ = C 5 3 = 10 .

⇒ P A = 1 − P A ¯ = 1 − 10 84 = 37 42

10 tháng 10 2017

HD: Xếp 10 quyển sách tham khảo thành một hàng ngang trên giá sách có : 10! cách sắp xếp.

Sắp xếp 2 cuốn toán 1 và toán 2 cạnh nhau có 2! cách,

Sắp xếp 6 cuốn sách Toán sao cho có hai quyển Toán T1 và Toàn T2 cạnh nhau có 2!.5! cách.

Khi đó có 4 vị trí để sắp xếp 3 cuốn Anh ở giữa hai quyển Toán và 3 cách sắp xếp cuốn Tiếng Anh.

20 tháng 7 2017

Đáp án A.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật

Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.

Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_

Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3  cách.

Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.

Vậy xác suất cần tính là  P = 240 . A 4 3 . 3 10 ! = 1 210 .

28 tháng 10 2018

Đáp án A

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật

Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5 ! .2 ! = 240  cách.

Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_

Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3  cách.

Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.

Vậy xác suất cần tính là  P = 240. A 4 3 .3 10 ! = 1 210 .