K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

Đáp án B

Ta có  y ' = 4 sin 2 x   cos   x sin   x - ( 2 m 2 - 5 m + 2 ) cos   x = cos   x [ ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]

Xét trên ( 0 ; π 2 )  ta thấy cos   x > 0 , để hàm số đồng biến trên khoảng này thì  ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0  với  ∀ x ∈ ( 0 ; π 2 )  hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2  do m nguyên nên tồn tại duy nhất m=1

 

NV
1 tháng 2 2021

Bạn tham khảo:

Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24

1 tháng 2 2021

Ớ anh ơi, nhấn vô cái link tham khảo nó lại ra đúng link của câu này ạ :( 

22 tháng 5 2019

NV
5 tháng 10 2021

Đề là \(\dfrac{cos^2x}{3}+\dfrac{sinx}{3}+1\) hay \(cos^2\left(\dfrac{x}{3}\right)+sin\left(\dfrac{x}{3}\right)+1\) vậy nhỉ?

8 tháng 10 2021

dạ cái thứ 2 ạ 

 

12 tháng 2 2019

NV
16 tháng 6 2019

Câu 1:

\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)

Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)

Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)

Hàm số không có GTLN và GTNN

Câu 2:

\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)

NV
16 tháng 6 2019

Câu 3:

\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)

\(y=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)

Câu 4:

\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\frac{2}{11}\le y\le2\)

NV
4 tháng 5 2020

3.

\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)

\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)

\(f'\left(0\right)=-sin\left(0\right)=0\)

\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)

\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)

4.

\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)

\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=3-2=1\)

\(\Rightarrow y'=0\) ; \(\forall x\)

5.

\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)

\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)

\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)

NV
25 tháng 2 2020

\(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^{4034}x\le sin^2x\\cos^{4038}x\le cos^2x\end{matrix}\right.\)

\(\Rightarrow sin^{4034}x+cos^{4038}x< sin^2x+cos^2x=1\) (dấu = ko xảy ra)

\(\Rightarrow\left|sin^{2017}x-cos^{2019}x\right|< \sqrt{\left(1+1\right)\left(sin^2x+cos^2x\right)}=\sqrt{2}\)

\(\Rightarrow sin^{2017}x-cos^{2019}x+\sqrt{2}>0\) \(\forall x\)

Vậy để hàm số xác định với mọi x trên đoạn đã cho

\(\Rightarrow m-sinx-cosx-2sinx.cosx\ge0\) \(\forall x\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx\le m\)

Đặt \(sinx+cosx=t\Rightarrow2sinx.cosx=t^2-1\) \(\left(-1\le t\le\sqrt{2}\right)\)

\(\Rightarrow t^2+t-1\le m\Rightarrow m\ge\max\limits_{\left[-1;\sqrt{2}\right]}\left(t^2+t-1\right)=\sqrt{2}+1\)

Vậy \(m\ge\sqrt{2}+1\)

NV
25 tháng 2 2020

Sử dụng Bunhiacopxki thôi:

\(\left(sin^{2017}x-cos^{2019}x\right)^2\le\left(1+1\right)\left(sin^{4034}x+cos^{4038}x\right)< 2\left(sin^2x+cos^2x\right)=2\)

\(\Rightarrow-\sqrt{2}< sin^{2017}x-cos^{2019}x< \sqrt{2}\)

BĐT bên trái chuyển vế cho ta: \(sin^{2017}x-cos^{2019}x+\sqrt{2}>0\)

17 tháng 8 2023

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)