Tìm điều kiện của x để phân thức sau xác định:
1) \(\dfrac{5-x}{x^2-3x}\)
2) \(\dfrac{3x}{2x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,x^3-8 ne 0`
`=>x^3 ne 8`
`=>x ne 2`
`b,2x^2+5x+3 ne 0`
`=>2x^2+2x+3x+3 ne 0`
`=>2x(x+1)+3(x+1) ne 0`
`=>(x+1)(2x+3) ne 0`
`=>x ne -1,-3/2`
`c,x^2-4 ne 0`
`=>x^2 ne 4`
`=>x ne 2,-2`
a) ĐK:
\(x^3-8\ne0\\ \Leftrightarrow x\ne2\)
b) ĐK:
\(2x^2+5x+3\ne0\\ \Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne-\dfrac{3}{2}\end{matrix}\right.\)
c) ĐK:
\(x^2-4\ne0\\ \Leftrightarrow x\ne\pm2\)
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
a: Để C là số nguyên thì \(3x^3+6x^2+3x+x^2+2x+1-2⋮x^2+2x+1\)
=>\(x^2+2x+1\in\left\{1;-1;2;-2\right\}\)
=>(x+1)^2=1 hoặc (x+1)^2=2
=>\(x\in\left\{0;-2;\sqrt{2}-1;-\sqrt{2}-1\right\}\)
b: Để D là số nguyên thì \(x^4+x^2+x^3+x-29⋮x^2+1\)
=>\(x^2+1\in\left\{1;-1;29;-29\right\}\)
=>x^2+1=1 hoặc x^2+1=29
=>\(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)
a: ĐKXĐ: \(3x^2+6x\ne0\)
=>\(x^2+2x\ne0\)
=>\(x\cdot\left(x+2\right)\ne0\)
=>\(x\notin\left\{0;-2\right\}\)
b: ĐKXĐ: \(x^3+64\ne0\)
=>\(x^3\ne-64\)
=>\(x\ne-4\)
c: ĐKXĐ: \(x^2-1\ne0\)
=>\(x^2\ne1\)
=>\(x\notin\left\{1;-1\right\}\)
a)\(x\in R\)
b)\(x\ne1\)
c) \(x\notin\left\{1;2\right\}\)
d) \(x\notin\left\{3;-3\right\}\)
e) \(x\ne1\)
f) \(x\notin\left\{2;3\right\}\)
Lời giải:
Ta thấy: $x^2+2x+3=(x+1)^2+2\geq 2>0$ với mọi $x\in\mathbb{R}$
Tức là $x^2+2x+3\neq 0$ với mọi $x\in\mathbb{R}$
Do đó ĐKXĐ là $x\in\mathbb{R}$
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)
d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)
f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)
1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)
2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)
mik cam on bn