Cho hình thoi ABCD có AB = 13cm, AC = 10cm. Tính diện tích của hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì : ABCD là hình thoi
\(\Rightarrow IA=IC=\frac{AC}{2}=\frac{12}{2}=6\)
Xét \(\Delta ABI\) vuông tại I
\(\Rightarrow AB^2=AI^2+BI^2\)
\(\Rightarrow BI^2=AB^2-AI^2=10^2-6^2=64\)
\(\Rightarrow BI=8\)
\(\Rightarrow BD=2.BI=2.8=16\)
Diện tích hình thoi ABCD là :
\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.12.16=96\)
Chúc bạn học tốt !!!
Kẻ BH vuông góc AD
Tam giác ABH là tam giác đều nên BH=AD=10(cm)
Suy ra SABCD=10.10=100(cm2)
1) \(S_{ABCD}=\dfrac{1}{2}.AC.BD\Rightarrow BD=\dfrac{2S_{ABCD}}{AC}=\dfrac{2.50\sqrt[]{3}}{10}=10\sqrt[]{3}\left(cm\right)\)
Gọi O là giao điểm AC và BD
\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{1}{2}AC=5\left(cm\right)\\OB=\dfrac{1}{2}BD=5\sqrt[]{3}\left(cm\right)\end{matrix}\right.\)
Xét Δ vuông OAB có :
\(AB^2=OA^2+OC^2=25+25.3=100\left(cm^2\right)\left(Pitago\right)\)
\(\Rightarrow AB=10\left(cm\right)\)
2) Xét Δ vuông OAB có :
\(AB=2OA=10\left(cm\right)\)
⇒ Δ OAB là Δ nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABD}=30^o\\\widehat{BAC}=60^o\end{matrix}\right.\)
mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2\widehat{BAC}\\\widehat{ADC}=\widehat{ABC}=2\widehat{ABD}\end{matrix}\right.\) (tính chất hình thoi)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2.60=120^o\\\widehat{ADC}=\widehat{ABC}=2.30=60^o\end{matrix}\right.\)
Giải
Chu vi hình thoi là:
4. 4 = 16 (cm)
Diện tích hình thoi là:
6.4:2 =24:2=12 (cm vuông)
Đáp số: Diện tích : 12 cm vuông
Chu vi : 16 cm
a) Ta có EFGH là hình chữ nhật (Tứ giác có 3 góc vuông)
b) S A B C D = 1 2 A C . B D = 30 c m 2
c) SEFGH = EF.FG = 15cm2
Ta có: \(S_{ABCD}=\dfrac{1}{2}.BD.AC\)(với S là diện tích)
\(\Rightarrow\dfrac{1}{2}.2a.8a=32\)
\(\Rightarrow8a^2=32\)
\(\Rightarrow a^2=4\)
\(\Rightarrow a=2\left(cm\right)\)
Diện tích của hình thoi ABCD là
S = 1/2AC.BD
Gọi O là giao điểm của AC và BD
⇒ S = 2OA.OB
Từ giả thiết ta có hình thoi ABCD có A ^ = 60 0 nên Δ ABD đều
Do đó Δ ABO là nửa tam giác đều có BO = 1/2BD = 6/2 = 3( cm ).
Áo dụng định lí Py – to – go ta có:
Gọi H là giao điểm của hai đường chéo AC,BD.
⇒ HA = HC = 5( cm )
Áp dụng định lí Py – to – go ta có: