K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Kẻ BH vuông góc AD

Tam giác ABH là tam giác đều nên BH=AD=10(cm)

Suy ra SABCD=10.10=100(cm2)

7 tháng 8 2023

1) \(S_{ABCD}=\dfrac{1}{2}.AC.BD\Rightarrow BD=\dfrac{2S_{ABCD}}{AC}=\dfrac{2.50\sqrt[]{3}}{10}=10\sqrt[]{3}\left(cm\right)\)

Gọi O là giao điểm AC và BD

\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{1}{2}AC=5\left(cm\right)\\OB=\dfrac{1}{2}BD=5\sqrt[]{3}\left(cm\right)\end{matrix}\right.\)

Xét Δ vuông OAB có :

\(AB^2=OA^2+OC^2=25+25.3=100\left(cm^2\right)\left(Pitago\right)\)

\(\Rightarrow AB=10\left(cm\right)\)

2) Xét Δ vuông OAB có :

\(AB=2OA=10\left(cm\right)\)

⇒ Δ OAB là Δ nửa đều

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABD}=30^o\\\widehat{BAC}=60^o\end{matrix}\right.\)

mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2\widehat{BAC}\\\widehat{ADC}=\widehat{ABC}=2\widehat{ABD}\end{matrix}\right.\) (tính chất hình thoi)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2.60=120^o\\\widehat{ADC}=\widehat{ABC}=2.30=60^o\end{matrix}\right.\)

 

2 tháng 3 2018

Bài tập: Diện tích hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Gọi H là giao điểm của hai đường chéo AC,BD.

⇒ HA = HC = 5( cm )

Áp dụng định lí Py – to – go ta có:

2 tháng 1 2020

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

25 tháng 2 2021

bạn tự vẽ hình nha ( mình nản vẽ hình lắm ) 

ta có AB = 6 cm 

lại có góc ABC = 60 độ 

suy ra : △ABC là △ đều  ( △cân có một góc bằng 60 độ ) 

suy ra AC bằng 6 cm suy ra AO = CO = 3 cm 

xét △ABO vuông tại O có :

theo định lý py-ta-go ta có AB2 = BO2+ AO2 

=> BO2 = 36 - 9 = 25 (cm)

=> BO = 5 cm 

=> BD = 10 cm 

vậy diện tích hình thoi là:

1/2.6.10 = 30cm2 ( điều cần tìm )

 

Gọi giao điểm của AC và BD là H

Ta có: ABCD là hình thoi(gt)

nên Hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

mà AC cắt BD tại H(gt)

nên H là trung điểm của AC, H là trung điểm của BD và AH⊥BD tại H

Ta có: ABCD là hình thoi(gt)

nên AD=AB

Xét ΔADB có AB=AD(cmt)

nên ΔADB cân tại A(Định nghĩa tam giác cân)

Xét ΔADB cân tại A có \(\widehat{A}=60^0\)(gt)

nên ΔADB đều(Dấu hiệu nhận biết tam giác đều)

⇒BD=AB

mà AB=2dm(gt)

nên BD=2dm

mà \(DH=\dfrac{DB}{2}\)(H là trung điểm của DB)

nên \(DH=\dfrac{2}{2}=1dm\)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AH^2+DH^2=AD^2\)

\(\Leftrightarrow AH^2=AD^2-DH^2=2^2-1^2=3\)

hay \(AH=\sqrt{3}\)(dm)

mà \(AC=2\cdot AH\)(H là trung điểm của AC)

nên \(AC=2\sqrt{3}\)(dm)

Ta có: ABCD là hình thoi(gt)

nên \(S_{ABCD}=\dfrac{1}{2}\cdot AC\cdot BD=\dfrac{1}{2}\cdot2\sqrt{3}\cdot2=2\sqrt{3}\left(dm^2\right)\)

12 tháng 1 2021

cảm ơn ạ, giúp em bài này với https://hoc24.vn/cau-hoi/cho-tam-giac-abc-co-s-30-cm-vuong-lay-d-tren-ac-sao-cho-ad-13-ac-goi-e-la-trung-diem-cua-ab-tinh-s-debc.332503413779

7 tháng 10 2019

A B C D I

Vì : ABCD là hình thoi 

\(\Rightarrow IA=IC=\frac{AC}{2}=\frac{12}{2}=6\)

Xét \(\Delta ABI\) vuông tại I

\(\Rightarrow AB^2=AI^2+BI^2\)

\(\Rightarrow BI^2=AB^2-AI^2=10^2-6^2=64\)

\(\Rightarrow BI=8\)

\(\Rightarrow BD=2.BI=2.8=16\)

Diện tích hình thoi ABCD là :

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.12.16=96\)

Chúc bạn học tốt !!!

26 tháng 3 2020

Kẻ BH vuông góc AD

Tam giác ABH là nửa tam giác đều nên BH=AB:2=5 (cm)

Suy ra SABCD=5.10=50 (cm2)