K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Dễ thấy A > 1

Ta có:

\(A=\frac{1}{1^2}+\frac{1}{2^3}+...+\frac{1}{2018^{2019}}\)

\(< \frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2018^2}< 1+\frac{1}{1\cdot2}+...+\frac{1}{2017\cdot2018}\)

\(=1+1-\frac{1}{2}+...+\frac{1}{2018}=2-\frac{1}{2018}< 2\)

Vì \(1< A< 2\) nên A không nguyên

9 tháng 5 2023

sai nha 

 

 

 

19 tháng 8 2017

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

19 tháng 8 2017

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)

7 tháng 12 2020

a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)

\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}

b/

\(2A=2+2^2+2^3+2^4+...2^{2019}\)

\(\Rightarrow A=2A-A=2^{2019}-1\)

=> A, B là 2 số tự nhiên liên tiếp

8 tháng 11 2018

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

9 tháng 11 2018

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

7 tháng 5 2019

Bài 3

\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(=1+\frac{5}{n+1}\)

Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)

Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=-1\Rightarrow n=-2\)

\(n+1=5\Rightarrow n=4\)

\(n+1=-5\Rightarrow n=-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)

Bài 2:

\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)