Cho hình bình hành ABCD .gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm của AD , BC . BM và DN cắt AC lần lượt tại E và F . a/ Tứ giác BMDN là hình gì ? vì sao ? b/ Chứng minh AE = E F = FC . c/ Tính diện tích tam giác DBM .Biết diện tích Hình bình hành là 30 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có MD//BN ( AB//CD)
MD=BN(AD=BC,MD=AM,BN=NC)
=> BMDN là hình bình hành
a: Xét tứ giác BMDN có
BN//DM
BN=DM
Do đó: BMDN là hình bình hành
=>BM//DN
Xét ΔADF có
M là trung điểm của AD
ME//DF
Do đó: E là trung điểm của AF
=>AE=EF
Xét ΔCEB có
N là trung điểm của CB
NF//EB
DO đó: F là trung điểm của CE
=>AE=EF=FC
b: AE+EO=AO
CF+FO=CO
mà AO=CO; AE=CF
nên EO=FO
=>O là trung điểm của EF
BMDN là hình bình hành
nên BD cắt MN tại trung điểm của mỗi đường
=>O là trung điểm của MN
Xét tứ giác MENF có
O làtrung điểm chung của MN và FE
nên MENF là hình bình hành
a,Hình bình hành ABCD có AB=CD
⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN
Mặt khác, M,N lần lượt là trung điểm của AB và CD
Do đó, AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)
b, Tứ giác AMCN là hình bình hành
⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)
⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^
ΔEDNΔEDN và ΔKBMΔKBM có:
M2ˆ=N2ˆM2^=N2^
DN=BMDN=BM
B1ˆ=D1ˆB1^=D1^
⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)
⇒ED=KB⇒ED=KB (đpcm)
c, Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒OA=OC⇒OA=OC
ΔCABΔCAB có:
MA=MBMA=MB
OA=OCOA=OC
MC cắt OB tại K
⇒⇒ K là trọng tâm của ΔCABΔCAB
Mặt khác, I là trung điểm của BC
⇒⇒ IA,OB,MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm)
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Lời giải :
Để \(MPNQ\) là hình chữ nhật thì \(MN=PQ\)
Ta có : \(AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BN\) , \(AM\) song song với BN \(\Rightarrow AMNB\) là hình bình hành \(\Rightarrow AB=MN\Rightarrow MN=CD\)
Ta lại có : \(AP=PQ=QC\) ( cmt ) \(\Rightarrow PQ=\dfrac{1}{3}AC\)
\(\Rightarrow CD=MN=PQ=\dfrac{1}{3}AC\)
\(\dfrac{CA}{CD}=3\) thì MPNQ là hình chữ nhật
.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi
Câu c chắc là 245 cm2