Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AD=AC\Rightarrow\)△CAD cân tại A mà AM là trung tuyến.
\(\Rightarrow\)AM cũng là đường phân giác.
\(\Rightarrow\widehat{MAE}=\dfrac{\widehat{BAE}}{2}\left(1\right)\)
\(AE=AB\Rightarrow\)△BAE cân tại A mà AN là trung tuyến.
\(\Rightarrow\)AN cũng là đường phân giác.
\(\Rightarrow\widehat{CAN}=\dfrac{\widehat{CAD}}{2}\left(2\right)\)
Ta có: \(\widehat{BAE}=\widehat{CAD}\) (đối đỉnh), nên từ (1) và (2) suy ra:
\(\widehat{EAM}=\widehat{CAN}\)
Mà \(\widehat{EAM}+\widehat{CAM}=180^0\) (kề bù)
\(\Rightarrow\widehat{CAN}+\widehat{CAM}=180^0\)
\(\Rightarrow\widehat{MAN}=180^0\)
\(\Rightarrow\)M,A,N thẳng hàng.
cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )
rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)
lại có gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng
bạn tham khảo link mà mk đưa cho nhé
hoiap247.com/cau-hoi/82020
nhớ k cho mk nhé
Hình bạn tự vẽ nha :)
Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A
=> \(\widehat{ABE}\) = \(\widehat{AEB}\)
\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)
Xét \(\Delta ADC\) có AD = AC => \(\Delta ADC\) cân tại A
=> \(\Delta ADC\) = \(\Delta ACD\)
\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)
Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)
=> BE // CD
\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE
\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD
Do đó 3 điểm M , A , N thẳng hàng
a: Xét ΔADM và ΔACM co
AD=AC
DM=CM
AM chung
=>ΔADM=ΔACM
b: Xét ΔAEN và ΔABN có
AE=AB
EN=BN
AN chung
=>ΔAEN=ΔABN
a) Xét \(\Delta EAB\) và \(\Delta DAC\) có :
\(AE=AC\) ( gt)
\(AB=AD\left(gt\right)\)
\(\widehat{EAB}=\widehat{DAC}\) ( đối đỉnh )
Do đó : \(\Delta EAB=\Delta CAD\) ( c-g-c)
\(\Rightarrow BE=CD\) ( cạnh tương ứng )
\(\Rightarrow\) \(\widehat{E_1}=\widehat{C_1}\) ( hai góc tương ứng )
b) Ta có : \(ME=\dfrac{1}{2}BE\) ( M là trung điểm của BE )
\(NC=\dfrac{1}{2}CD\) ( N là trung điểm của CD )
mà BE = CD ( cmt )
\(\Rightarrow ME=NC\)
Xét \(\Delta EAM\) và \(\Delta NAC\) có :
\(ME=NC\) (cmt)
\(AE=AC\) ( gt )
\(\widehat{E_1}=\widehat{C_1}\)
Do đó \(\Delta EAM=\Delta CAN\) ( c-g-c)
\(\Rightarrow\widehat{EAM}=\widehat{NAC}\) ( hai góc tương ứng )
Ta có : \(\widehat{EAN}+\widehat{NAC}=180^o\) ( hai góc kề bù )
hay \(\widehat{EAN}+\widehat{EAM}=180^o\) ( vì \(\widehat{EAM}=\widehat{NAC}\))
\(\Rightarrow\) ba điểm A , N , M thằng hàng (đpcm)