K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

- Tập xác định: D = R\{-1}.

- Đạo hàm: Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Đồ thị hàm số cắt trục tung tại điểm A(0; -1).

- Hệ số góc của tiếp tuyến tại điểm A là: k = y’(0) = 2.

Chọn B.

24 tháng 3 2019

24 tháng 3 2017

 Tập xác định: D = R \{1}.

- Đạo hàm: Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Đồ thị hàm số cắt trục tung tại điểm A(0; -1)

   ⇒ y'(0) = 2.

Chọn B.

15 tháng 1 2017

7 tháng 4 2019

Chọn D.

Phương pháp

Hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x) 

Do đó hệ số góc của tiếp tuyến tại tại giao điểm của đồ thị hàm số với trục tung là  y ' 0 = − 1 4 .

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$y'=\frac{-1}{(x+1)^2}$

Giao điểm của đồ thị $y=\frac{x+2}{x+1}$ vớ trục hoành là $(-2,0)$

PTTT của $y=\frac{x+2}{x+1}$ tại điểm tiếp điểm $(-2,0)$ là:

$y=f'(-2)(x+2)+f(-2)=\frac{-1}{(-2+1)^2}(x+2)+0$

$y=-x-2$

Đường tiếp tuyến $y=-x-2$ cắt trục tung tại điểm có tung độ:

$y=-0-2=-2$

 

14 tháng 9 2019

- Tập xác định: D = R\ {1}

- Đạo hàm: Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Đồ thị hàm số cắt trục hoành tại Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Hệ số góc của tiếp tuyến tại A là Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

Chọn A.

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm

Ta có: y' \(=\dfrac{-3}{\left(x+1\right)^2}\)

k=f'\(\left(x_0\right)\)\(\Rightarrow-3=\dfrac{-3}{\left(x_0+1\right)^2}\Leftrightarrow\left(x_0+1\right)^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)

Với \(x_0=0\) ta có pt tiếp tuyến:

\(d:3x+y-2=0\)

Với \(x_0=-2\) ta có pt tiếp tuyến:

\(d:3x+y+10=0\)

a: Tọa độ giao điểm của (d) với trục Ox là:

y=0 và (-x+2)=0

=>x=2 và y=0

\(y'=\dfrac{\left(-x+2\right)'\left(x+1\right)-\left(-x+2\right)\left(x+1\right)'}{\left(x+1\right)^2}\)

\(=\dfrac{\left(-\left(x+1\right)+x-2\right)}{\left(x+1\right)^2}=\dfrac{-3}{\left(x+1\right)^2}\)

Khi x=2 thì y'=-3/(2+1)^2=-3/9=-1/3

y-f(x0)=f'(x0)(x-x0)

=>y-0=-1/3(x-2)

=>y=-1/3x+2/3

b: Tọa độ giao của (d) với trục Oy là;

x=0 và y=(-0+2)/(0+1)=2

Khi x=0 thì \(y'=\dfrac{-3}{\left(0+1\right)^2}=-3\)

y-f(x0)=f'(x0)(x-x0)

=>y-2=-3(x-0)

=>y=-3x+2

11 tháng 1 2019

Đáp án A

Ta có y ' = − 1 x + 1 2 ;   C ∩ O y = 0 ; 2 ⇒ y ' 0 = − 1  

Do đó PTTT là:  y = − x + 2