cho tam giác ABC vuông A,đường cao AH.HD,HE lần lượt vuông góc với AB,AC.trên tia đối của tia AC lấy F sao cho AE=AF.lấy K đối xứng với B qua A.M là trung điểm của AH.chứng minh MC vuông góc với HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEI vuông tại I và ΔAHI vuông tại I có
AI chung
IE=IH(gt)
Do đó: ΔAEI=ΔAHI(hai cạnh góc vuông)
Suy ra: AE=AH(hai cạnh tương ứng)(1)
Xét ΔAHK vuông tại K và ΔAFK vuông tại K có
AK chung
KH=KF(gt)
Do đó: ΔAHK=ΔAFK(hai cạnh góc vuông)
Suy ra: AH=AF(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAEI=ΔAHI(cmt)
nên \(\widehat{EAI}=\widehat{HAI}\)(hai góc tương ứng)
hay \(\widehat{EAB}=\widehat{BAH}\)
Ta có: ΔAHK=ΔAFK(cmt)
nên \(\widehat{HAK}=\widehat{FAK}\)(hai góc tương ứng)
hay \(\widehat{HAC}=\widehat{FAC}\)
Ta có: \(\widehat{EAB}+\widehat{HAB}+\widehat{HAC}+\widehat{FAC}=\widehat{EAF}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{BAC}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot60^0=120^0\)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{AEF}=\widehat{AFE\:}=\dfrac{180^0-\widehat{EAF}}{2}\)(Số đo của các góc ở đáy trong ΔAEF cân tại A)
\(\Leftrightarrow\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-120^0}{2}\)
hay \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)
Vậy: \(\widehat{EAF}=120^0\); \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)