Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Xét tứ giác EMFB có
A là trung điểm chung của EF và MB
=>EMFB là hình bình hành
Hình bình hành EMFB có EF\(\perp\)MB
nên EMFB là hình thoi
c: EMFB là hình thoi
=>EM//FB và EM=FB(1)
Ta có: P là trung điểm của FB
=>\(PF=PB=\dfrac{BF}{2}\left(2\right)\)
Ta có: Q là trung điểm của EM
=>\(QE=QM=\dfrac{EM}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra PF=PB=QE=QM
Xét tứ giác MQBP có
MQ//BP
MQ=BP
Do đó: MQBP là hình bình hành
=>MB cắt QP tại trung điểm của mỗi đường
mà A là trung điểm của MB
nên A là trung điểm của PQ
=>P,A,Q thẳng hàng
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>AD//HE và AD=HE; AE//HD và AE=HD
AE=HD
A\(\in\)EF
Do đó: HD//AF
AE=HD
AE=AF
Do đó: HD=AF
Xét tứ giác AHDF có
AF//DH
AF=DH
Do đó: AHDF là hình bình hành
c:
AC và AF là hai tia đối nhau
mà E\(\in\)AC
nên AE và AF là hai tia đối nhau
=>A nằm giữa E và F
mà AE=AF
nên A là trung điểm của EF
Xét tứ giác EBFM có
A là trung điểm chung của EF và BM
nên EBFM là hình bình hành
Hình bình hành EBFM có EF\(\perp\)BM
nên EBFM là hình thoi