Lập phương trình của mặt phẳng (α) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt phẳng ( α ) vuông góc với hai mặt phẳng ( β ) và ( γ ), do đó hai vecto có giá song song hoặc nằm trên ( α ) là: n β → = (3; −2; 2) và n γ → = (5; −4; 3).
Suy ra n α → = n β → ∧ n γ → = (2; 1; −2)
Mặt khác ( α )( α ) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là n α → . Vậy phương trình của ( α ) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.
Đáp án B.
Phương pháp: Mặt phẳng ( α ) đi qua M(1; –3;4) và nhận n ( β ) → = ( 6 ; 2 - 1 ) là 1 VTPT.
Cách giải: Mặt phẳng ( α ) đi qua M(1; –3;4) và nhận n ( β ) → = ( 6 ; 2 - 1 ) là 1 VTPT nên có phương trình:
6(x– 1) + 2(y+3) – (z– 4) = 0 → 6x + 2y – z +4 = 0
Mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng ( β ): x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên ( α ) là AB → = (2; 2; 1) và n β → = (1; 2; −1).
Suy ra ( α ) có vecto pháp tuyến là: n α → = (−4; 3; 2)
Vậy phương trình của ( α ) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0
Đáp án C
Phương trình mặt phẳng qua M và song song với ( α ) là:
3(x-3)-(y+1)+2(z+2)=0 ⇔ 3x-y+2z-6=0
Gọi giao điểm của (α) với ba tia Ox, Oy, Oz lần lượt là A(a; 0; 0), B(0; b; 0), C(0; 0 ; c) (a, b, c > 0).
Mặt phẳng (α) có phương trình theo đoạn chắn là:
Do (α) đi qua M(1; 2; 3) nên ta thay tọa độ của điểm M vào (1):
Thể tích của tứ diện OABC là:
Áp dụng bất đẳng thức Cô-si ta có:
⇒ abc ≥ 27.6 ⇒ V ≥ 27
Ta có: V đạt giá trị nhỏ nhất ⇔ V = 27
Vậy phương trình mặt phẳng ( α ) thỏa mãn đề bài là:
hay 6x + 3y + 2z – 18 = 0