Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Kẻ tiếp tuyến tại M là 1 điểm bất kỳ thuộc đường tròn. Tiếp tuyến này cắt Ax, By thứ tự tại C, D. Chứng minh đường tròn đường kính CD tiếp xúc với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(do )
b)
Ta có: CM = AC, MD = BD (chứng minh trên)
Lại có: CD = CM + MD = AC + BD (đcpcm)
c)
Ta có: CM = AC, MD = BD (chứng minh trên)
Xét tam giác COD vuông tại O
Áp dụng hệ thức lượng trong tam giác vuông có:
(do MO = R)
Vì bán kính đường tròn không đổi khi M di chuyển trên nửa đường tròn nên không đổi do đó tích AC. BD không đổi khi M di chuyển trên nửa đường tròn.
1: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)
=>góc COD=1/2*góc AOB=90 độ
2: CD=CM+MD
mà CM=CA và MD=DB
nên CD=CA+DB
3: AC*BD=CM*MD
Xét ΔOCD vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2 không đổi
Kẻ OI AB ( I CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.
Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.
Ta có IO=CA+DB2 =MC+MD2 =DC2 là bán kính của đường tròn (I).
Do đó AB tiếp xúc với đường tròn đường kính CD.
Theo tính chất tiếp tuyến, ta có:
Ax ⊥ AB
By ⊥ AB
Suy ra: Ax // By hay AC // BD
Suy ra tứ giác ABDC là hình thang
Gọi I là trung điểm của CD
Khi đó OI là đường trung bình của hình thang ABDC
Suy ra: OI // AC ⇒ OI ⊥ AB
Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)
Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.
a: Xét tứ giác ADMO có
góc DAO+góc DMO=180 độ
nên ADMO là tứ giác nội tiếp
b: Gọi N là trung điểm của CD
Xét hình thang ABCD ccó
O,N lần lượt là trung điểm của AB,CD
nên ON là đường trung bình
=>ON//AD//BC
=>ON vuông góc với AB
=>AB là tiếp tuyến của (N)
c) BM cắt Ax tại E.BC cắt MH tại I
Vì AB là đường kính nên \(\angle AMB=90\)
Vì CM,CA là tiếp tuyến nên \(CM=CA\)
Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE
Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)
mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm
a: Xét (O) có
CA,CM là tiếp tuyến
nênCA=CM và OC là phân giác của góc AOM(1)
mà OA=OM
nên OC là trung trực của AM
=>OC vuông góc với AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Xét (O)có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>MB vuông góc MA
=>MB//OC
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>OC vuông góc với OD
mà OM vuông góc DC
nên MC*MD=OM^2
=>AC*BD=R^2
c: Gọi H là trung điểm của CD
Xét hình thang ABDC có
H,O lần lượtlà trung điểm của CD,AB
nên HO là đường trung bình
=>HO//AC//BD
=>HO vuông góc với AB
=>AB là tiếp tuyến của (H)