Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất tiếp tuyến, ta có:
Ax ⊥ AB
By ⊥ AB
Suy ra: Ax // By hay AC // BD
Suy ra tứ giác ABDC là hình thang
Gọi I là trung điểm của CD
Khi đó OI là đường trung bình của hình thang ABDC
Suy ra: OI // AC ⇒ OI ⊥ AB
Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)
Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.
c) BM cắt Ax tại E.BC cắt MH tại I
Vì AB là đường kính nên \(\angle AMB=90\)
Vì CM,CA là tiếp tuyến nên \(CM=CA\)
Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE
Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)
mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm
Ta có:
ˆO1+ˆO2+ˆO3+ˆO4=180o�1^+�2^+�3^+�4^=180�
⇔ˆO2+ˆO2+ˆO3+ˆO3=180o⇔�2^+�2^+�3^+�3^=180� (do ˆO1=ˆO2, ˆO3=ˆO4�1^=�2^, �3^=�4^)
⇔2ˆO2+2ˆO3=180o⇔ˆO2+ˆO3=90o⇔ˆCOD=90o⇔2�2^+2�3^=180�⇔�2^+�3^=90�⇔���^=90�
b)
Ta có: CM = AC, MD = BD (chứng minh trên)
Lại có: CD = CM + MD = AC + BD (đcpcm)
c)
Ta có: CM = AC, MD = BD (chứng minh trên)
Xét tam giác COD vuông tại O
Áp dụng hệ thức lượng trong tam giác vuông có:
MO2=MC.MD=AC.BD=R2��2=��.��=��.��=�2 (do MO = R)
Vì bán kính đường tròn không đổi khi M di chuyển trên nửa đường tròn nên không đổi do đó tích AC. BD không đổi khi M di chuyển trên nửa đường tròn.
1: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)
=>góc COD=1/2*góc AOB=90 độ
2: CD=CM+MD
mà CM=CA và MD=DB
nên CD=CA+DB
3: AC*BD=CM*MD
Xét ΔOCD vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2 không đổi
a: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là đường trung trực của MA
=>OC vuông góc với MA tại I
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
=>OD vuông góc với BM
Từ (1) và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính CD
Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO''//AC
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')
a: Xét tứ giác ADMO có
góc DAO+góc DMO=180 độ
nên ADMO là tứ giác nội tiếp
b: Gọi N là trung điểm của CD
Xét hình thang ABCD ccó
O,N lần lượt là trung điểm của AB,CD
nên ON là đường trung bình
=>ON//AD//BC
=>ON vuông góc với AB
=>AB là tiếp tuyến của (N)