Cho 3 điểm phân biệt A; B; C phân biệt. Khẳng định nào sau đây đúng?
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) với 2 điểm , ta vẽ dc 1 đường thẳng
B) từ 1 điểm ta nối với 2 điểm còn lại, ta vẽ dc 2 dt. Với 3 điểm như thế, ta vẽ dc 2.3=6 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 6:2=3dt
C)từ 1 điểm ta nối với 3 điểm còn lại, ta vẽ dc 3 dt. Với 4 điểm như thế, ta vẽ dc 3.4=12 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 12:2=6 dt
D)từ 1 điểm ta nối với 9 điểm còn lại, ta vẽ dc 9 dt. Với 10 điểm như thế, ta vẽ dc 2.3=6 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 6:2=3
E)từ 1 điểm ta nối với n điểm còn lại, ta vẽ dc n-1 dt. Với n điểm như thế, ta vẽ dc n.(n-1) dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là n.(n-1):2 dt
Cho biết có thể vẽ được bao nhiêu đường thẳng (phân biệt) trong mỗi trường hợp sau :
a) Với hai điểm (phân biệt) cho trước
Vẽ đc 1
b) Với ba điểm (phân biệt) cho trước và không thẳng hàng
Vẽ đc 3
c) Với bốn điểm (phân biệt) cho trước, trong đó không có 3 điểm nào thẳng hàng
Vẽ đc 6
Cho biết có thể vẽ được bao nhiêu đường thẳng (phân biệt) trong mỗi trường hợp sau:
a, Với hai điểm (phân biệt)cho trước: vẽ được 2
b, Với ba điểm (phân biệt) cho trước và không thẳng hàng: vẽ được 3
c,Với bốn điểm phân biệt cho trước trong đó không có 3 điểm nào thẳng hàng: vẽ được 6
Chọn B.
Xét các đáp án:
+ Đáp án A. Ta có (dùng quy tắc hình bình hành; với D là điểm thỏa mãn ABCD là hình bình hành). Vậy A sai.
+ Đáp án B. Ta có
Vậy B đúng.
+ Đáp án C. Ta có (với D là điểm thỏa mãn ABCD là hình bình hành). Vậy C sai.
+ Đáp án D. Ta có . Vậy D sai.
Cách 1:
TH1: 2 điểm thuộc a và 1 điểm thuộc b
Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)
Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)
=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)
TH2: 2 điểm thuộc b và 1 điểm thuộc a
Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)
Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)
=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)
Vậy có tất cả 12 + 18 = 30 tam giác.
Cách 2:
Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)
Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)
Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)
Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)
Vậy số tam giác có thể có là : 30 (tam giác)
Chọn B