K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y+z}{15-10+6}=\dfrac{-33}{11}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).15=-45\\y=\left(-3\right).10=-30\\z=\left(-3\right).6=-18\end{matrix}\right.\)

Theo tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x-y+z}{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{-33}{\dfrac{11}{30}}=-90\)

Do đó: x=-45; y=-30; z=-18

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)

16 tháng 8 2017

ta có : x/3=y/9 => 2x/6=y/9

=> 2x/6=y/9=2x-y/6-9=12/-3=-4

+, 2x/6=-4 => x=-12

+, y/9=-4 => y=-36

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

27 tháng 10 2016

a) \(\Rightarrow\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Ánh dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

\(\Rightarrow\) x = 1 . 18 = 18

y = 1 . 16 = 16

z = 1 . 15 = 15

b)

Từ 4x = 3y ; 7y=5z => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\) x = 2 . 15 = 30

y = 2 . 20 = 40

z = 2 . 28 = 56

c) từ 10x=6y \(\Rightarrow\) \(\frac{x}{6}=\frac{y}{10}\) \(\left(\frac{x}{6}\right)^2\)=\(\left(\frac{y}{10}\right)^2\) \(\Rightarrow\frac{x^2}{36}\)=\(\frac{y^2}{100}\) \(\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)

áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{2x^2-y^2}{72-100}\) = \(\frac{-28}{-28}\) = 1

\(\Rightarrow\frac{x}{6}=1\) ; \(\frac{y}{10}=1\)

\(\Rightarrow x=6;y=10\)

hoặc \(\Rightarrow\frac{x}{6}=-1;\frac{y}{10}=-1\)

\(\Rightarrow x=-6;y=-10\)

Chúc bạn học tốt

27 tháng 10 2016

de ma

 

2 tháng 10 2020

Bài 1:

a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)

\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)

\(\Leftrightarrow5-5x=8\)

\(\Leftrightarrow x=-\frac{3}{5}\)

b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)

\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)

2 tháng 10 2020

Bài 1:

c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)

Theo bài ra ta cs 

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)

\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)

T lại cs 

\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{z}{8}\left(2\right)\)

Từ (1);(2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{2x+3y-4z}{2.15+3.10-4.8}=\frac{56}{28}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=20\\z=16\end{cases}}}\)

6 tháng 3 2020

\(2x=3y;4y=5z\) => \(8x=12y;12y=15z\)

=>  \(\frac{8x}{120}=\frac{12y}{120}=\frac{15z}{120}\)=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)

=>   \(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}=\frac{2x+3y-4z}{30+30-32}=\frac{56}{28}\)

=> \(\frac{2x}{30}=2=>2x=60=>x=30\)

\(\frac{3y}{30}=2=>3y=60=>y=20\)

\(\frac{4z}{32}=2=>4z=64=>z=16\)

26 tháng 11 2021

Lỗi

26 tháng 11 2021

hicc cảm ơn đã nhắc mình ;-;;;

21 tháng 10 2020

a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

        \(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58

APa dụng TC dãy TSBN ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\Rightarrow x=42;y=28;z=12\)

Các câu còn lại tương tự