Cho biểu thức P = x + 2 2 - 2 x + 2 x - 8 + x - 8 2 . Tính nhanh giá trị của biểu thức P tại x = -53/4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)
\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)
\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x+1}{2x}\)
b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:
\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)
a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)
b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)
c: Thay x=2017 vào C, ta được:
\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)
\(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2\)
\(=100\)
Ta có:
\(\left(x^2+\frac{1}{x^2}\right)^4=x^8+4x^6.\frac{1}{x^2}+6x^4.\frac{1}{x^4}+4x^2.\frac{1}{x^6}+\frac{1}{x^8}=7^4\)
\(\Leftrightarrow x^8+4x^4+6+\frac{4}{x^4}+\frac{1}{x^8}=2401\)(1)
Ta thấy x=0 không phải là nghiệm của phương trình nên ta có
\(\left(1\right)\Leftrightarrow\left(x^8+\frac{1}{x^8}\right)+\left(4x^4+\frac{4}{x^4}\right)+6=2401\)
\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2-2.x^4.\frac{1}{x^4}+4\left(x^4+\frac{1}{x^4}\right)+6=2401\)
\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2+4\left(x^4+\frac{1}{x^4}\right)=2397\)(2)
Đặt \(x^4+\frac{1}{x^4}=t\)ta có:
\(\left(2\right)\Leftrightarrow t^2+4t=2397\)
\(\Leftrightarrow t^2+4t-2397=0\)
\(\Leftrightarrow\left(t^2-47t\right)+\left(51t-2397\right)=0\)
\(\Leftrightarrow t\left(t-47\right)+51\left(t-47\right)=0\)
\(\Leftrightarrow\left(t-47\right)\left(t+51\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-47=0\\t+51=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=47\\t=-51\end{cases}}}\)
Vì \(t=x^4+\frac{1}{x^4}\ge0\)nên \(t\ne-51\Rightarrow t=47\)
Ta lại có:
\(x^4+\frac{1}{x^4}=47\)
\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2-2.x^4.\frac{1}{x^4}=47^2\)
\(\Leftrightarrow x^4+\frac{1}{x^8}=2209\)
Ta có:
\(\left(x^2+\frac{1}{x^2}\right)^2=x^4+\frac{1}{x^4}+2.x^4.\frac{1}{x^4}=7^2.\)
\(\Leftrightarrow x^4+\frac{1}{x^4}+2=49.\)
\(\Leftrightarrow x^4+\frac{1}{x^4}=47\)
\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2=47^2\)
\(\Leftrightarrow x^8+\frac{1}{x^8}+2.x^4.\frac{1}{x^4}=2209\)
\(\Leftrightarrow x^8+\frac{1}{x^8}+2=2209.\)
\(\Leftrightarrow x^8+\frac{1}{x^8}=2207\)
- x^8+x^4*y^4+y^8=(x^4+y^4)^2-x^4*y^4=((x^2+y^2)^2-2x^2*y^2)^2-(x^2*y^2)^2=8
- x^4+x^2*y^2+y^4=(x^2+y^2)^2-x^2*y^2=0
Đặt x^2+y^2=a; x^2*y^2=b
nên hệ pt
- a^2-b=0
- (a^2-2b)^2-b^2=8
Giải ra tìm a,b rồi thay vô tìm x,y
a, ĐKXĐ : x khác -4;4;-2
P =[ 8+x-4/(x-4).(x+4) ] : 1/(x+2).(x-4)
= x+4/(x+4).(x-4) . (x+2).(x-4)
= x+2
b, x^2-9x+20 = 0
<=> (x^2-4x)-(5x-20)=0
<=> (x-4).(x-5)=0
<=> x-4=0 hoặc x-5=0
<=> x=4 hoặc x=5
+, Với x=4 thì P = 4+2 = 6
+, Với x=5 thì P = 5+2 = 7
k mk nha
P = x + 2 - x - 8 2 = 10 2 = 100.
Biểu thức P có giá trị bằng 100 tại mọi giá trị của x.