Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1
21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.
23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)
Chia cả hai vế của đẳng thức trên với \(y^2>0\)được :
\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)
\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)
Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :
\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)
\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)
\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow-\left(x^2+y^2\right)\le-2\)
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)
\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)
\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)
\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)
cho cac so x,y thoa man:x^4+x^2y^2+y^4-4=0
x^8+x^4y^4+y^8=8
A=x^12+x^2y^2+y^12 co gia tri la bao nhieu
X^8+x^4y^4+y^8=8
hay (x^4+y^4)^2-x^4y^4=8
hay (x^4+y^4+x^2y^2)(x^4+y^4-x^2y^2)=8
mà x^4+x^2y^2+y^4-4=0 nên x^4+y^3-x^2y^2=2
biết tổng hiệu tìm được x,y thôi/
\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi x=y=1
Đặt x^2+y^2=a; x^2*y^2=b
nên hệ pt
Giải ra tìm a,b rồi thay vô tìm x,y