Chọn ngẫu nhiên 6 số nguyên dương trong tập{1;2;3..,10} và sắp xếp chúng theo thứ tự tăng dần. Gọi P là xác suất để số 3 được chọn và xếp ở vị trí thứ 2. Khi đó P bằng:
A. 1/60
B. 1/6
C. 1/3
D. 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đề ko thấy yêu cầu gì là 2 số phân biệt nên làm theo hướng đó.
Không gian mẫu: \(12^2=144\)
Chọn số nguyên tố chẵn: có đúng 1 cách là chọn số 2
Chọn số nguyên tố lẻ nhỏ hơn 13: có 4 cách (3,5,7,11)
\(\Rightarrow2.4.2!=16\) cách
Xác suất: \(P=\dfrac{16}{144}=...\)
a: Biến cố ngẫu nhiên: A
Biến cố chẵc chắn: B
Biến cố ko thể: C
b: n(A)=3
=>P(A)=3/6=1/2
Số phần tử của không gian mẫu là
Gọi A:”số 3 được chọn và xếp ở vị trí thứ 2”.
Trong tập đã cho có 2 số nhỏ hơn số 3, có 7 số lớn hơn số 3.
+ Chọn 1 số nhỏ hơn số 3 ở vị trí đầu có: 2 cách.
+ Chọn số 3 ở vị trí thứ hai có: 1 cách.
+ Chọn 4 số lớn hơn 3 và sắp xếp theo thứ tự tăng dần có: cách.
Do đó n(A)=2.1.35=70.
Vậy
Chọn C.