K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

ai trả lời là chtt thì next khỏi câu hỏi của tôi nghe chưa

30 tháng 12 2015

chờ 2 năm nx, k lm đc vì ms học lớp 7 àk

-_-

12 tháng 7 2019

\(a,\frac{x+1}{x-2}-\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x^2+4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2+2x+x+2-\left(x^2-2x-x+2\right)=2x^2+4\)

\(\Leftrightarrow x^2+3x+2-x^2+2x+x-2=2x^2+4\)

\(\Leftrightarrow6x=2x^2+4\)

\(\Leftrightarrow2x^2+4-6x=0\)

\(\Leftrightarrow2x^2+4-6x=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

12 tháng 7 2019

\(b,\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=5\left(x-1\right)\left(x-1\right)\)

\(\Leftrightarrow2x^2+2x+x+1=5\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+3x+1=5x^2-10x+5\)

\(\Leftrightarrow5x^2-2x^2-10x-3x+5-1=0\)

\(\Leftrightarrow3x^2-13x+4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{3}\end{cases}}}\)

31 tháng 1 2019

a) Đa thức thương  x 2  – 6x + 9.

b) Đa thức thương 2 x 2  – 5.

c) Đa thức thương  x 2  + 4x + 3 và đa thức dư -12.

d) Đa thức x + 5 và đa thức dư x – 4.

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^4-10x^3+6x^2\)

c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)

d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?

a) Ta có: \(\left(x^2-2x\right)^2-6x^2+12x+9=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)

\(\Leftrightarrow\left(x^2-2x-3\right)^2=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: S={3;-1}

b) Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)=0\)

\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow x^2+x-2=0\)(Vì \(x^2+x+5>0\forall x\))

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

Vậy: S={-2;1}

5 tháng 1 2021

2 ý a và b anh CTV nãy đã làm rồi nha, còn câu c này thì làm dài dòng+không chắc :VVV

c)\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)-9x^2=0\)

\(\Leftrightarrow\left(2x^2-3x+1\right)\left(2x^2-3x+1+8x\right)-9x^2=0\)

\(\Leftrightarrow\left(2x^2-3x+1\right)^2+8x\left(2x^2-3x+1\right)+16x^2-25x^2=0\)

\(\Leftrightarrow\left(2x^2-3x+1+4x\right)^2-25x^2=0\)

\(\Leftrightarrow\left(2x^2+x+1\right)^2-25x^2=0\)

\(\Leftrightarrow\left(2x^2+x+1-5x\right)\left(2x^2+x+1+5x\right)=0\)

\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(2x^2-4x+1\right)=0\\\left(2x^2+6x+1\right)=0\end{matrix}\right.\)

Rồi đến đây tự giải nhé, không phân tích được thì bấm máy tính là ra nha:vv

`@` `\text {Ans}`

`\downarrow`

`1.`

\(\left(-4xy\right)\cdot\left(2xy^2-3x^2y\right)\)

`=`\(\left(-4xy\right)\left(2xy^2\right)+\left(-4xy\right)\left(-3x^2y\right)\)

`=`\(-8\left(x\cdot x\right)\left(y\cdot y^2\right)+12\left(x\cdot x^2\right)\left(y\cdot y\right)\)

`=`\(-8x^2y^3+12x^3y^2\)

`2.`

\(\left(-5x\right)\left(3x^3+7x^2-x\right)\)

`=`\(\left(-5x\right)\left(3x^3\right)+\left(-5x\right)\left(7x^2\right)+\left(-5x\right)\left(-x\right)\)

`=`\(-15x^4-35x^3+5x^2\)

`3.`

\(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)

`=`\(3x\left(4x+5\right)-2\left(4x+5\right)-12x^2+6x\)

`=`\(12x^2+15x-8x-10-12x^2+6x\)

`=`\(\left(12x^2-12x^2\right)+\left(15x-8x+6x\right)-10\)

`=`\(13x-10\)

`4.`

\(2x^2\left(x^2-7x+9\right)\)

`=`\(2x^2\cdot x^2+2x^2\cdot\left(-7x\right)+2x^2\cdot9\)

`=`\(2x^4-14x^3+18x^2\)

`5.`

\(\left(3x-5\right)\left(x^2-5x+7\right)\)

`=`\(3x\left(x^2-5x+7\right)-5\left(x^2-5x+7\right)\)

`=`\(3x^3-15x^2+21x-5x^2+25x-35\)

`=`\(3x^3-20x^2+46x-35\)

C xem lại bài cuối ạ.